
Integration of P2P and Clouds to Support
Massively Multiuser Virtual Environments

Emanuele Carlini
IMT, Lucca, Italy and
CNR-ISTI, Pisa, Italy

Email: emanuele.carlini@isti.cnr.it

Massimo Coppola
Institute of Information Science

and Technologies CNR-ISTI, Pisa, Italy
Email: massimo.coppola@isti.cnr.it

Laura Ricci
University of Pisa

Pisa, Italy
Email: ricci@di.unipi.it

Abstract—Massively Multiuser Virtual Environments
(MMVEs) are attracting millions of players from all over
the world. Currently used Client/Server infrastructures and
technologies are reaching their limits of flexibility and scalability.

We propose an approach that combines the technological
advantages of two different paradigms, namely P2P networking
and Cloud Computing. Our proposal leverages known P2P
techniques like Virtual Nodes and consistent hashing, as well as
separate overlays for different purposes, e.g. interest and object
management.

We propose combining these techniques with the definition of
a specific role in the overlay for Cloud-based, trusted resources.
This enables the distribution of the MMVE on top of a mix of
Cloud and user resources. The solution outlined allows building
key-value distributed storage systems that can resize at run-time
(elasticity) and provide scalability and load balancing features to
the MMVE platform.

I. INTRODUCTION

A Massively Multi-User Virtual Environment (MMVE, [1])
is a synthetic world where multiple participants share the same
virtual environment and interact with it and among themselves
via avatars, virtual representations of the users.

Most of the available MMVEs as of today rely on a
Client/Server (C/S) architecture. A cluster of high-end servers
can provide a lot of computational power and data centres ag-
gregate a large amount of network traffic. Such infrastructures
easily manage some MMVE tasks, such as user login, state
management, synchronization between players and billing.
However, as the number of simultaneous players keeps grow-
ing, C/S technologies show their scalability and applicability
limits. For instance, server clusters need to be bought and op-
erated to withstand service peaks, balancing computational and
electrical power constraints. A cluster-based C/S architecture
concentrates all communication bandwidth needs at the data
centre.

These drawbacks are incentives to investigate two orthog-
onal approaches: on-demand (or Cloud) computing and Peer-
to-Peer (P2P) networks.

The exploitation of Cloud computing in MMVE [2], as in
other service provisioning infrastructures, allows on-demand
resource gathering according to the current load of the plat-
form. Typically, this represents a huge saving for the service
provider, as its economical plan need to account for hardware
management costs which are flexible and almost proportional
to the actual load, with very low fixed expenses. For MMVEs,

besides server time, bandwidth costs represent a major expense
when renting on-demand resources. As the MMVE scales up,
these costs can significantly affect the feasibility of the on-
demand approach in providing computing power. As reported
in [3], if we consider an average traffic of 27TB per 12 hours
and the prices of Amazon EC2 (i.e. 0.08$ per GB), the monthly
fee for bandwidth is about 130000$. This kind of economic
efforts can render the Cloud approach to MMVEs too costly,
and prevent some game providers from joining the market.

In order to exploit on-demand computing in a MMVE, ideas
from P2P-based MMVE architectures [4] can yeld concrete
advantages. P2P infrastructures are inherently scalable, and
may relieve the load on the MMVE servers by exploiting the
capacity of the peers. If an host fails, the network is able to
self-repair and reorganize, providing robustness to the MMVE.
Network traffic is distributed among the users involved. These
properties pair with little costs for the MMVE operator.

However, with the application of P2P techniques a number
of problems arise in maintaining all of the basic structural
requirements of MMVEs [5]. Mechanisms have to be added
to known P2P architectures to ensure persistence of the game
state, because when users leave the system they remove both
their resources and the data they have managed so far, unduly
stressing the self-repair features of the overlay. The lack of
a central authority makes it quite hard to enforce security
and soundness of updates to the system state at any time.
Moreover, users machines typically have strict constraints on
computational power and network capability, which may make
some of them harder to exploit. Solving these problems with
an acceptable overhead requires a very specific P2P approach
to suit MMVEs.

In this paper we propose to employ several existing and
new P2P techniques together in order to allow synergistic
exploitation of P2P and Cloud features. The main ideas can
be summarize as follows.

• An MMVE architecture based on P2P distributed memory
spaces, used to store data items by the MMVE; the concept
of Virtual Nodes is exploited in order to ease load balancing,
fault tolerance and system robustness.

• Decoupling of interest management and object manage-
ment over two distinct data services on top of the P2P
overlay. By separating the effort due to object movement from
the actual management of the object state, we increase the

performance and scalability of a distributed MMVE.
• The proposed mechanism is aware of different classes of

resources, and is flexible enough to allow heterogeneous nodes
to join the P2P network, by selectively exploiting end-user
provided resources and Cloud-based ones.

Sect. II recalls main MMVE concepts and requirements,
and Sect. III discusses closely related works. In Sect. IV we
describe the high-level architecture, whose possible implemen-
tation and deployment are further detailed in Sect. V.

II. BACKGROUND

In the following we include player avatars, NPCs and all
items in the virtual environment in the set of game objects,
which are characterized within a 2D virtual world by a pair of
coordinates and an object state. The simulation is an iterative
process, divided in time intervals of a fixed length. During
each interval the game server(s) typically (1) receive events
from the connected users, (2) process these events, computing
a new state for some objects and (3) broadcasts the new state
of the simulation to the connected users.

Currently, the C/S architecture is by far the most common
architecture for commercial MMVEs. In order to run the whole
range of services provided by commercial MMVEs, a C/S
architecture can be extended to exploit a set of servers running
on top of federated machines, such as a dedicated server cluster
or Cloud-based resources.

Depending on the type of the MMVE, communication
among servers may be required. Distributed server architec-
tures exploit communication among servers to provide the
players with the ability to share a vast virtual world, such as in
Role-Playing Games (RPG). Replicated servers architectures
replicate the virtual world for different groups of users and
require no communications among distinct servers, easing to
achieve shorter response times e.g. in First Person Shooter
(FPS) and Real Time Strategy (RTS) games.

P2P architectures share the workload of the simulation
among the peers, which usually act as servers of small virtual
world regions. Hybrid P2P architectures exploit only a subset
of the user resource (i.e. the super peers) to compute the
simulation. Conversely in pure P2P architectures all the peers
perform a role in the computation of the simulation.

All MMVEs share a common set of basic requirements
which we quickly summarize in the following.

Scalability By scalability we consider the ability of a
MMVE to react to an increasing load without jeopardizing
the quality of the interactive experience. In a MMVE the load
is generated by the following factors [6] : (i) the size of the
virtual world, (ii) the number of entities, (iii) the density of
the objects, and (iv) the amount of interactions.
The first three factors are related to the placement of the
objects into the virtual world. C/S architectures usually divide
the virtual world into regions. In particular, techniques as zon-
ing, mirroring, and instancing aim at balancing the workload
between servers, in order to increment scalability (see [6] for
a detailed description of these methods).

In P2P architectures most solutions exploit a distribution of the
load that takes in account heterogeneity of the peers in terms
of bandwidth and computational capabilities. Also because of
the unpredictable pattern of join and leave of the peers, robust
fault tolerance mechanisms should be considered to guarantee
persistence and availability.
The amount of interactions among players depends on the kind
of the simulation genre [6]. For instance, fast-paced games
as FPS are likely to have higher amount of interactions than
RPGs, where the interactions are scattered. A proper selection
of the virtual world objects from which receiving updates helps
to reduce the amount of interactions.

Cheating Mitigation Cheating mitigation is an important
aspect in those MMVEs where a certain degree of competition
among users is expected. The MMVEs businesses model is
strictly related to the number of the users, thus maintaining
a secure and fair (thus enjoyable) user experience is a core
task. In C/S all the servers are trustworthy, hence cheating
mitigation mechanisms are applied in a straightforward way.
Conversely, P2P-based architectures incur in the additional
problem of the individuation of the trustworthy peers that take
the role of the servers.

Persistence and Availability Players pay regular fees to
access a commercial MMVE. Discontinuity in the service,
such as servers failures and login problems are perceived as
annoying problems by the users. Persistence and availability
are implicitly guaranteed in C/S as all the data are stored in
central and accessible databases. In P2P-based architectures,
data can be stored using a distributed storage infrastructure,
for example by indexing the content by the geographical area
in the virtual world to ease the retrieve. However, even if the
design of such infrastructures does exist, it is not clear if they
are able to support frequent reading and writing which are
typical of MMVEs.

Interest management Interest Management (IM) [7] is a
well studied topic in research on distributed environments. Any
single entity or player does not need to know the whole world
state, and is instead only interested in those events that happen
inside her Area Of Interest (AOI). IM means defining the shape
and content of each entity’s AOI. As relevant information
has to be gathered and transmitted to the entities, IM can
deeply influence the MMVE architecture. C/S system are less
affected, as IM is managed internally, powerful servers and
ad-hoc connections are available. In this case, IM is mainly
relevant to reduce the bandwidth toward the users.
These assumptions are unrealistic for P2P-based architecture,
where the two common approaches to IM are the region-based
one and the spatial-based one. Spatial-based methods require
that each peer maintains a connection with each avatar’s peer
in the AOI. This model permits fine-grained filtering of the
entities, but assumes each peer is able to compute the AOI
by itself. Region-based methods are simpler. IM for each
region is delegated to the region server. However, an avatar’s
AOI may overlap with multiple regions, requiring either the
peer to contact a variable number of region servers or a
communication among the region servers involved.

Object allocation The problem of objects allocation is to
find the proper match between the virtual world’s objects
and the servers in distributed architectures (P2P-based and
distributed server).
Object allocation strategies are affected by the IM system used.
Again, common solutions can be classified into region-based
and spatial-based.
Region-based solutions rely on the concept of region server,
which owns all the objects in a region. These approaches are
widespread in distributed servers and hybrid P2P architectures,
and are easy to implement as they closely match region-based
IM. The main drawback is load balancing, as regions with a
high density of objects may saturate the bandwidth capability
of a server or peer. In P2P approaches, the issue is mitigated
by a proper selection of the region servers.
Spatial models are usually exploited in pure P2P approaches.
The asymmetry between entities, which need state updates,
and objects, which need to be stored somewhere, distinguishes
spatial IM and spatial object allocation. Each object is man-
aged by its closest peer, leading to a spatial partitioning of the
world among the peers (e.g. Voronoi diagrams). P2P spatial
approaches are vulnerable to overheads caused by non-uniform
object distributions and ownership changes.

A. Virtual Nodes and DHT approaches

Virtual Nodes [8] (VNs, also called virtual servers) were
introduced with Chord [9] as a mechanism to improve load
balancing in Distributed Hash Table (DHT) approaches.

In a DHT P2P network of N nodes, the DHT address space
is partitioned among the nodes. The topology of inter-node
connections allows to reach any node within O(logN) hops,
and limits the amount of connections per peer to O(logN).
When nodes are physical, adding and removing nodes requires
some repartitioning of the address space among the nodes.

When using VNs, each one is in charge of an address
range as if it were an ordinary DHT node. However, VNs are
not permanently associated with physical resources, and each
physical node can host several VNs. A physical node entering
the system becomes responsible of a set of non contiguous
VNs (see also §IV-C) which migrate to the new peer.

All standard techniques as node replication can be applied
to VN approaches. There is a tradeoff in implementation
complexity, as nodes need to manage multiple VNs, but the
address space partitioning among VNs may be kept static. The
VNs approach has some evident advantages related to static
and dynamic load balancing. (A) More powerful hosts may
receive an higher number of VNs than less powerful ones.
(B) Heavy loaded nodes may trade VNs with unloaded ones.
(C) In the case of a physical node failure, its VNs are possibly
transferred/reassigned to different, unloaded physical nodes,
reducing the risk of hot spots and overloaded nodes.

As it will be important in the following, load balancing
in DHTs is also affected by the choice of the hash function
mapping the objects into the DHT address space. Random hash
functions can uniformly spread the objects, while locality sen-
sitive and locality preserving hash functions increase locality,

speeding up related queries at the cost of possibly unbalancing
the object distribution.

III. RELATED WORK

Many MMVE architectures have been introduced to over-
take the inherent limitations of C/S infrastructures. Pure P2P
approaches [10], [5], [11], [12], [13] rely on the distribution
of the state of the virtual world on user’s node.

In particular, VoroGame [13] uses two different logical
structures for the interest management and objects allocation.
VoroGame considers a pure P2P network where the peers
belong to two different overlays: a structured overlay (DHT)
for the data distribution and a Voronoi-based overlay for
the IM. Data distribution in the DHT is done randomly, all
the peers managing some part of the world state. Locality-
based filtering on the objects is computed by the Voronoi
overlay, which exploits a spatial division of the world. The
approach suffers the problems typically related to pure P2P
architectures, namely heterogeneity and unpredictability of the
peers.

Due to these problems, several approaches provide solution
where servers are paired with user’s resources [14], [15],
[16], [17]. One of the earlier approach is HYMS [14] that
combines peer and server resources to manage a MMVE
simulation. It divides the world into square regions which
are possibly assigned to peers running on end-user resources.
HYMS explicitly manages peer heterogeneity. The computa-
tional overhead for a region is given to the first peer with
enough computational power and bandwidth capabilities that
enters into a region. A fixed number of peers which afterwards
enter the region may act as secondary replicas, in order to
increase failure robustness. The peer managing a region is
interested in the region itself, and this may a be security
problem, as “user” peers can exploit their “manager” role
to gain unfair advantages. Also, in HYMS the size of the
regions is fixed, which can limit the effectiveness of the load
balancing.

The concept of VN is currently exploited in commercial
applications such Dynamo [18]. In Dynamo, data are dis-
tributed into an address space by using consistent hashing and
address space is then assigned to a set of Virtual Nodes. Each
object is paired with a key belonging to the address space,
through the application of a hashing function. The address
space is structured as a ring, and keys are assigned to the first
VN encountered by a clockwise walking of the ring (i.e. the
successor VN), such as in the Chord DHT. Dynamo’s data
partitioning schema proved to be flexible enough to provide
scalability and robustness, which are two basic requirements
for a MMVE architecture. However, replicas are managed
according the eventual consistency model, which is unsuitable
for MMVE, given its fast evolving nature.

IV. ARCHITECTURE DESCRIPTION

The architecture we describe combines several previously
known ideas, stemming from the choice of adopting Virtual
Nodes. As we combine these approaches, we extend them

Cloud Resources User Resources
performance reliable unreliable

controlled open environment,security
environment vulnerabilities

scalability price costly no cost
availability reliable high churn

TABLE I
CLOUD RESOURCES VERSUS USER RESOURCES.

(§IV-B, §IV-C) in order to meet the specific requirements of
MMVEs.

A. Scalability and Load Balancing

In order to achieve load balancing we have to define a
load measure for VNs (see §V-B) as well as a strategy for
moving VNs among nodes (initial VN mapping may be a
special case of this). The chosen number of VNs in the system,
if we assume it to be constant, affects the load balancing
and scalability features of the system. Load balancing can be
ineffective if the number of VNs is too close to the number
of physical nodes (also impairing the ability of the MMVE
system to recruit more resources), and finding a new mapping
for a VN without violating any constraint (see §IV-C) can
be difficult if all physical nodes manage too many VNs. The
scalability of the system is thus bounded between these two
phenomena.

The amount of VNs per node (i.e. the node load) dynam-
ically varies at run time according to factors like hardware
capabilities and resource trust. Thus the overall number of VNs
controls the grain of the resource load. With more VNs and
a smaller grain, we achieve finer load balancing (and higher
VN overhead). We are not considering dynamic approaches
that can split VNs, as the management overhead seems to be
even higher.

B. Backup Virtual Nodes

The mapping strategies for VN will be different for trusted
and untrusted nodes. Table I summarizes the main differences
between cloud and user resources. In order to cope with the
user-provided resource limitations of trust and performance,
we propose to identify two special types of VNs.

Any VN that is assigned to a user resource will be classified
as an unreliable Virtual Node (uVN). An uVN is always
specially replicated (see Figure 1). We call the special replica
called backup Virtual Node (bVN). A bVN is always assigned
to a trusted resource, either an on-demand resource or a
provider’s own resource. The uVN, hence the user resource,
performs several tasks: (i) it maintains the topology connec-
tions, (ii) it replies to the requests of the users, and (iii) it
sends a periodic copy of the objects’ state to its bVN.

While some of the VN will still reside on trusted resources,
the presence of uVN and bVN provides some concrete ad-
vantages and opportunities. First, backup data are managed
by a trusted resource, to allow recovering from failures of
untrusted resources. Second, the bVN can assume the role
of the referee to handle cheating. Using bVNs for cheating

VN VNuVN

bVN bVN

uVN

P P

user's peers

virtual nodes

backup virtual nodes

Fig. 1. High-level overview of the architecture. Each user’s peer P connects
to VNs (or uVNs) to access the MMVE content. The bVN layer provides
fault resilience and security.

mitigation requires that the workload imposed by the role
of referee is less than the workload generated from the full-
blown server (VN) role. This assumption will often be true, as
many referee-based strategies only perform random-sampling
checks.

C. Fault tolerance

The proposed architecture provides two layers of replica-
tion. A fine-grain data replication mechanism copies each
object assigned to a VN in several other VNs that follow
the first one in the object address space. A coarse grain VN
replication strategy copies the whole VN state.

Fine-grain. Most of the DHTs use data replication to
increase failure tolerance [19]. When a node NA leaves the
network, the DHT forwards the request for objects managed
by NA to the node NB that maintains a replica of the objects
of NA. However data replication shows some limits when the
departure rate of nodes is high [20]. As NB handles an extra
load, the departure of NA may prevent NB from complying
with the interactivity requirements of the MMVE.

Coarse-grain. VN replication copes with the unreliability
of untrusted resources, preventing unexpected peaks of load
due to user nodes leaving the network. With reference to
Figure 1, when a node NA that manages an uVN departs from
the network, the users connected to NA are assigned to the
node that manages the correspondent bVN, NC . Two entities
may realize about the involuntary departure of NA: NC , and
the neighbour of NB in the address space, which maintains
replicas. Each of such entities is able to inform the user peers
to forward their requests at NC .

In VN-based data partitioning it is important that no
physical node manages an object as well as some of its
replicas which reside on separate VNs. We follow the object
replication model used by Chord, exploiting successive VNs,
as it makes easy both finding the VN handling object replicas,
and generate incompatibility constraints among VNs in order
to guide VN (re)mapping. E.g. with replication k in the DHT,
hosting VNs which are at least k positions apart is a sufficient

constraint to ensure that no physical node is able to manage
any object twice.

V. IMPLEMENTATION ISSUES

This section describes how to deploy object and interest
management services on top of the architecture presented
in the previous section. Following the discussion in §II, the
objects of the MMVE are mapped onto two different logical
address spaces, possibly on separate DHTs.

The Object Space (OS) maps the objects into the DHT
using an uniform hash function (i.e. SHA1). Each node acts
as a server for the objects in its address space, resolving
conflicts and broadcasting state updates. Each peer maintains
a connection with the nodes of the DHT managing objects in
its AOI. Since the object positions in the OS are unrelated
to their position in the virtual world, their movement in the
MMVE requires no transfer between nodes and introduces no
overhead. On the other hand, interest management may require
a huge amount of accesses to the DHT, since objects in the
AOI of a peer may be potentially spread on a large amount of
DHT nodes.

To address this issue we define a further address space, the
Interest Management Space (IMS). IMS stores only the virtual
world coordinates of the MMVE objects, and is exploited
to perform interest management. The objects are mapped to
the IMS space by using a locality-preserving hash function,
which with high probability maps close objects to the same
DHT node. Since the position of each object O determines
its address in the IMS space, a movement of O may require
the migration of the object between nodes. The overhead is
minimized as only the object’s coordinates in the MMVE have
to be transmitted.

Let us now describe in more details the operations on the
DHTs. When a peer P enters the simulation, P sends its initial
position to the IMS space in order to find the objects in its
AOI. Afterwards the identifiers of the objects are sent to the
OS space to gather their state. A parallel search of the objects
within the OS space may reduce the delay of retrieving their
state. The main problem of this approach may be the latency
of the object transfers. Even if a delay is acceptable during the
login phase, the delay for accessing the two DHT during game-
play may jeopardize the quality of the simulation. For this
reason, the definition of a set of prefetching techniques should
be defined. Each peer should prefetch the objects located
beyond its AOI before they actually enter in the AOI.

A. Locality-aware mapping of VNs

As we pointed out in the previous section, mapping a VN
onto an user resource (in the following we refer to user
resources as URs) is no trivial task. The problem can be
specified as follow: there exists a list lur = {UR1 . . . URn}
of URs candidates to act as servers, and a list of peers
lp = {P1..Pm} that access to the objects managed by a
specific VN, v.

We look for a mapping of v on a specific URx which satis-
fies a set of constrains related to the hardware capabilities of

the physical nodes (processing power to perform the MMVE
computation associated to the VNs, and bandwidth to receive
and broadcast all the updates, the security level they offer, and
to the latency and bandwidth they can provide with respect to
the peer).

In particular, our aim is to minimize the latency between
a request from a peer and the reply from URx. Measuring
the latencies among all pairs of peers and URs is of course
unpractical. Network Coordinates Systems (NCSs) [21] create
a two-dimensional representation where a point is associated
to each peer, and the distance between two points is roughly
proportional to the latency between the peers. NCSs allow
to predict network latencies without performing direct mea-
surements and to optimize network usage due to a minimal
monitoring effort.

Even knowing all the inter-peer latencies, finding the best
mapping is still a difficult task to perform in real-time. A way
to approximate the problem is to create a Voronoi Diagram
from the NCS two-dimensional area. A Voronoi diagram [22]
(also Voronoi tessellation) is a decomposition of a metric space
determined by the distances of the points of the space from
a specified discrete set of objects in the space, i.e. the sites.
Given a set of N sites on a two-dimensional euclidean plane, a
Voronoi diagram partitions the plane into N non-overlapping
regions, each one a convex polytope containing all the points
closer to that region site than to any other one.

A Voronoi tessellation built on NCS locations permits to
obtain easily the closer UR for a set of peers. In [22] the
functionalities of the VAST library have been shown to support
the construction and management of Voronoi Diagrams, and to
incur in overheads compatible with the real-time application
like MMVEs.

Voronoi graphs allow us to choose among different strate-
gies when selecting the proper UR to map a VN. The main
examples are most crowded (the chosen UR is the site with
the larger amount of peers in its area) and average closeness
(the chosen UR minimizes the latencies with the peer in its
area).

B. Virtual Nodes Load Measurement

We consider a VN receiving a number of writes for an
object o from a set lp = {P1..Pn} of peers. The VN resolves
the conflicts, it computes the new state for o and it sends
the updated version of the object at each P . The node that
manages the VN needs to support a load in terms of incoming
and outgoing bandwidth.

The modification rate for the object o (stored in the VN) de-
pends on the number of peers that write o during a simulation
interval T . For the sake of simplicity, we assume the following:
(i) each peer modifies o once per T and (ii) the peers that can
modify an object are also the only that receive updates for such
object. Following these assumptions the average incoming and
outcoming bandwidth requirement for each interval is:

Bin(o) = Bout(o) = s(o)× |lp| (1)

where s(o) is the size of the object’s state. With s(o) = 100
bytes and |N | = 10 nodes and T = 100ms the bandwidth
requirement is 80Kbps just for a single objects. In order to
manage consistency of the objects’ state between the server
and the users’ replicas, we consider Vector-Field Consistency
(VFC) [23]. The VFC exploits a 3-dimensional consistency
vector. Each dimension bounds the maximum divergence with
respect to a view of an object: (i) the time an object can
withstand without being refreshed with its last value, (ii) the
sequence, as the maximum amount of tolerated lost updates,
and (ii) the value, as the maximum allowed difference between
the replicas’ value.

The VFC decreases the bandwidth requirement for the
objects that are at the border of the avatar AOI, by a factor
that depends on the values assigned to the VFC:

Bout(o) =

n∑
i=0

f(V FCn,o)s(o) (2)

where 0 ≤ f(V FCn,o) ≤ 1 is the bandwidth coefficient
reduction given a VFC at node n for the object o.

VI. CONCLUSION

We believe that the combination of cloud computing and
P2P resources is eventually needed to realize MMVEs that
are scalable to larger and larger set of users, and to allow
dynamic resizing of the MMVE servicing platform.

In this paper we proposed a basic architecture for a flexible
and scalable management of MMVE simulation, by composing
previous techniques from the P2P field, and by specializing
those techniques to allow exploiting a mix of heterogeneous
resources in such time-critical applications.

There are still many open issues in the framework we
devised. Designing and testing the Virtual Nodes allocation
and monitoring policies, with respect to the scalability and
tune-ability of the resulting platform, is a new direction for
MMVEs, and it is also strongly affected by our introduction
of special “backup Virtual Nodes”. These bVNs are the key to
exploiting trusted, reliable resources from the Cloud to harness
and control the transient and unreliable user resources that we
want to exploit for simulation management. The ultimate goal
is to amortize the cost of on-demand resources by leveraging
the large set of resources volunteered by the end-users. We
intend to investigate on the optimal trade-off between the
direct costs of renting resources and the indirect costs of
the monitoring and back up activities required by the use of
unreliable resources.

ACKNOWLEDGMENT

Authors acknowledge the support of projects XtreemOS,
“Building and Promoting a Linux-based Operating System
to Support Virtual Organizations for Next Generation Grids”,
grant FP6-033576, and CONTRAIL, “Open Computing In-
frastructure for Elastic Services”, grant FP7-257438, and the
anonymous reviewers for useful comments.

REFERENCES

[1] S. Hu, “Spatial Publish Subscribe,” Proc. of IEEE Virtual Reality
workshop, Massively Multiuser Virtual Environment (MMVE09), 2009.

[2] A. Shaikh, S. Sahu, M.-C. Rosu, M. Shea, and D. Saha, “On demand
platform for online games,” IBM Systems Journal, vol. 45, no. 1, pp.
7–19, 2006.

[3] K. Chen, P. Huang, and C. Lei, “Game traffic analysis: An MMORPG
perspective,” Computer Networks, vol. 50, no. 16, pp. 3002–3023, 2006.

[4] A. Chen and R. Muntz, “Peer clustering: a hybrid approach to distributed
virtual environments,” in Proc. of 5th ACM SIGCOMM workshop on
Network and system support for games. ACM, 2006, p. 11.

[5] S. Hu, J. Chen, and T. Chen, “VON: a scalable peer-to-peer network for
virtual environments,” IEEE Network, vol. 20, no. 4, pp. 22–31, 2006.

[6] R. Prodan and V. Nae, “Prediction-based real-time resource provisioning
for massively multiplayer online games,” Future Generation Computer
Systems, vol. 25, no. 7, pp. 785–793, Jul. 2009.

[7] J.-S. Boulanger, J. Kienzle, and C. Verbrugge, “Comparing interest
management algorithms for massively multiplayer games,” Proceedings
of 5th ACM SIGCOMM workshop on Network and system support for
games - NetGames ’06, p. 6, 2006.

[8] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load
Balancing in Structured P2P Systems,” in Peer-to-Peer Systems II, ser.
LNCS. Springer, 2003, vol. 2735, pp. 68–79.

[9] I. Stoica, R. Morris, D. Liben-nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Protocol for Internet Applications,” IEEE/ACM Transactions on Net-
working (TON), vol. 11, no. 1, pp. 17–32, 2003.

[10] D. Frey, J. Royan, R. Piegay, A. Kermarrec, E. Anceaume, and F. Le
Fessant, “Solipsis: A decentralized architecture for virtual environ-
ments,” Proc. of 1st Intn.l Workshop on Massively Multiuser Virtual
Environments, pp. 29–33, 2008.

[11] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support for
massively multiplayer games,” IEEE INFOCOM, vol. 1, pp. 96–107,
2004.

[12] A. Bharambe, J. Douceur, J. Lorch, T. Moscibroda, J. Pang, S. Seshan,
and X. Zhuang, “Donnybrook: Enabling large-scale, high-speed, peer-
to-peer games,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 4, pp. 389–400, 2008.

[13] E. Buyukkaya, M. Abdallah, and R. Cavagna, “VoroGame: A Hybrid
P2P Architecture for Massively Multiplayer Games,” 6th IEEE Con-
sumer Communications and Networking Conf., pp. 1–5, 2009.

[14] K. Kim, I. Yeom, and J. Lee, “HYMS: A Hybrid MMOG server
architecture,” IEICE Transactions on Information and Systems, vol. E87,
pp. 2706–2713, 2004.

[15] J. Jardine and D. Zappala, “A hybrid architecture for massively multi-
player online games,” Proc. of the 7th ACM SIGCOMM Workshop on
Network and System Support for Games - NetGames ’08, p. 60, 2008.

[16] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned federation of
game servers: a peer-to-peer approach to scalable multi-player online
games,” in Proceedings of 3rd ACM SIGCOMM workshop on Network
and system support for games. ACM, 2004, pp. 116–120.

[17] S. Rooney, D. Bauer, and R. Deydier, “A federated peer-to-peer network
game architecture,” IEEE Communications Magazine, vol. 42, no. 5, pp.
114–122, 2004.

[18] G. DeCandia, D. Hastorun, M. Jampani, and G, “Dynamo: Amazon’s
highly available key-value store,” ACM SIGOPS, pp. 205–220, 2007.

[19] S. Ktari, M. Zoubert, A. Hecker, and H. Labiod, “Performance evaluation
of replication strategies in DHTs under churn,” in MUM ’07: Proc. of
the 6th Intn.l Conf. on Mobile and Ubiquitous Multimedia. New York,
NY, USA: ACM, 2007, pp. 90–97.

[20] S. Rhea, D. Geels, T. Roscoe, J. Kubiatowicz, and I. Research, “Han-
dling Churn in a DHT,” in ATEC’04: Proceedings of USENIX Annual
Technical Conference. USENIX Association, 2004, p. 10.

[21] B. Donnet, B. Gueye, and M. A. Kaafar, “A Survey on Network
Coordinates Systems, Design, and Security,” IEEE Comm. Surveys &
Tutorials, pp. 1–16, 2010.

[22] L. Genovali, “A Voronoi Based Framework for the Definition of P2P
Distributed Virtual Environments,” in Proc. of IEEE ICUMT, 2009.

[23] N. Santos, L. Veiga, and P. Ferreira, “Vector-field consistency for ad-hoc
gaming,” Lecture Notes in Computer Science, vol. 4834, p. 80, 2007.

