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Abstract—Time Management (TM) is an integral part of the
parallel and distributed systems that maintains the temporal
order of events in a system. In this paper, we present a
decentralised TM approach using a constrained communication
model based on the inherent properties of virtual worlds. The
proposed method uses a flat communication model and a region
synchronises itself with a set of regions that share boundaries
with it. It is evaluated with the help of a simple simulation
model and compared with non-synchronised and decentralised
scenarios. The simulation results show that it maintains local
causality constraint and reduces communication of messages over
the network. It is potentially more scalable and minimises longer
delays and complexity compared with hierarchical strategies with
multiple levels.

I. INTRODUCTION

The horizon of Parallel and Distributed Simulations
(PADSs) has recently been extended for a number of different
applications. However, Virtual Environments (VEs) among
these applications have gained much attention from the end
users. The reasons include the provision of impressive online
content, a significant increase in speed, and a significant
decrease in prices of high speed computers and network
resources. Most recently, people are showing a great inter-
est in social collaborative spaces called virtual worlds. The
users have freedom in content development according to their
desires on virtual land that is purchased using inland virtual
currency [1][2][3]. Since, a PADS system is partitioned and
executed with the help of a set of dedicated computers, it
is a challenging task to maintain temporal order of events.
This issue is called Time Management (TM) (alternatively
synchronisation or consistency) and it is an integral part of
a PADS system.

Parallel and distributed systems are fault tolerant, scalable
and provide better interactive user experience but their
performance is degraded when conservative approaches are
used for time synchronisation [4]. The existing algorithms
for PADS systems have shown great success for their target
applications but they have major performance issues when
used for virtual worlds. The target application of this research
is a world like Second Life [2][3] that imitates the nature of
social activities of the physical world. It gives more freedom
than physical world and has an inherent property that a user

or an activity is only influenced by the users or activities
surrounding them. Based on this property, we put restrictions
on communication and data distribution, and a system (serving
a region) synchronises itself with the regions (defined as
adjacent regions) that share physical boundaries with it. This
work proposes an efficient decentralised TM approach based
on the inherent properties of a virtual world. It is based
on a conservative event driven approach and maintains a
consistent view of dynamic hierarchical models based on our
split strategies [5]. Control is fully decentralised and a server
takes purely local decisions in consultation with adjacent
servers. It maintains traditional constraints and guarantees
that all events are processed in their temporal order. It greatly
reduces communication overhead, complexity, and delays
by avoiding a number of intermediate points compared with
traditional mechanisms based on conservative approaches.

This paper is organized as follows. Section II gives the
background of this research. The proposed decentralised TM
scheme is presented in section III. Section IV provides the
simulation results and illustrations. Conclusions and future
work are presented in section V.

II. BACKGROUND AND MOTIVATION

According to Fujimoto [6], the basic goal of TM is to
get exactly the same results as a sequential computer while
executing a system with a set of servers. Each system main-
tains a list of events (both internal and external) and in
each iteration removes the smallest timestamped event from
the list and processes it in correct temporal order (the local
causality constraint). Early synchronisation attempts proposed
by Bryant [7], and Chandy et al. [8] are prone to deadlock.
To resolve this issue, the concept of null messaging is used to
advance the simulation clock of a process. It uses a value
known as the Lookahead constraint that determines a safe
range for event processing. The Lookahead value has a dra-
matic performance effect on the TM algorithm [9]. According
to Pan et al. [10], asynchronous TM algorithms with small
Lookahead values have a “time creep” problem. The main
drawback of the null message algorithm is that it generates an
excessive number of null messages thus introducing longer



delays. A typical synchronous algorithm maintains a value
called the Lower Bound on Time Stamp (LBTS) for each
process based on current time, Lookahead value and timestamp
of the earliest event to solve this issue [4]. However, the time
advance in a synchronous algorithms might be blocked by a
process sending information with a low frequency. A number
of traditional techniques such as message counters and flush
queues are used to cope with transient messages [4][11].

The High Level Architecture (HLA) [12] is the current
simulation standard and it was basically developed as a com-
mon interoperability architecture to integrate different classes
of simulations. It is generalised and builds upon the results
from DIS (Distributed Interactive Simulation) [13] and simi-
lar approaches such as Aggregate Level Simulation Protocol
(ALSP) [6], and SIMNET (SIMulator NETworking) [14]. It
serves well for the applications such as analysis, training, and
test and evaluation. TM for an HLA federation is realised
jointly by a Run Time Infrastructure (RTI) and participating
federates. RTI is responsible for messages delivery and each
federate makes an explicit time advance request to it. RTI
grants permission if it can guarantee that no messages would
be received in a federate’s past. HLA has shown great suc-
cess for military applications, but it does not provide load
balancing and is poorly scalable. It is too complex, difficult to
learn, adopt, and use [12]. The basic HLA standard does not
support multi-level federations but implements all federates
at one level as a single federation. It includes no means for
inter-federation communication and conversion of a complex
hierarchical structure into a flat one introduces several issues
regarding data exchange, security, and re-usability [15]. Kim
et al. [16], argue that these issues can be easily resolved if
modular and hierarchical modelling methods are adopted.

To resolve these issues a number of attempts are made to
provide interoperability between federations of a federation
community [17][18][15], where a federation community is a
group of federations and RTIs working together for a common
goal. Myjak et al. [18] have proposed the following four
approaches for inter-federation communication: Federation
Gateway, Proxy/Bridge Federate, RTI Broker, and RTI-to-RTI
Protocol. Cai et al. [19] have proposed a hybrid approach by
integrating properties of both gateway and proxy mechanisms.
It filters confidential information and improves security and
interoperability. According to Cramp et al. [20], Federate
Proxy (FP) is the simplest architecture but it might not be
an ideal data filter for geographically distributed simulation
as it is a single local process. Further, it handles a single
federation with a flat structure. To minimise traversal of
potentially large distances, Magee et al. [21] presented the
concept of Distributed Federate Proxy (DFP). Cramp et al. [22]
further extended their architecture for handling hierarchical
federation communities. They proposed to distribute a FP into
a number of Distributed FP Components (DFPCs) where each
is assigned and processed local to a federation. These com-
ponents are linked together with the help of tree nodes called
SimNodes thus forming a hierarchical federation community.
However, according to Cramp et al. [20], these architectures

impose additional LBTS constraints on TM services for system
components and time advance decisions are made by the ulti-
mate root SimNode thus introducing unwanted longer delays.

Kim et al. [23] argue that the hierarchical methods
described above are temporary solutions requiring additional
interfaces that are not part of the RTI specification. It is
therefore difficult to achieve interoperability among RTI
systems developed by different vendors. According to
them, it improves the overall performance of an RTI, if
hierarchical federations are supported by an RTI itself. They
have proposed a hierarchical extension of HLA to handle
complex hierarchical models. The hierarchical structure is
implemented with the help of two types of processes called a
Federation Execution (FedEx) process and a federate process.
A FedEx process acts as a federate in upper level federation
and is defined as a representative federate. It has two possible
implementations: FedEx Processes, and fully distributed
federations. The number of FedEx processes in first might
be a major problem when a hierarchy goes deeper. Since no
limits are set on depth of a hierarchy, it might significantly
increase delays because of dependencies between FedEx
processes. The decentralised control in the second approach
is difficult to manage [23][16].

The existing centralised and distributed TM methods per-
form well with smaller and medium scale simulation environ-
ments, but they have key performance issues when used for
large scale virtual worlds. The hierarchical mechanisms are
complex and introduce larger delays because of dependencies
among their components for achieving a consistent environ-
ment. Similarly, decentralised peer-to-peer schemes incur an
excessive number of messages over the network. We believe
that, more scalable worlds can be developed by using a
fully decentralised control with a constrained communication
model. Different activities far apart from each other could
be carried out without blockage and communication overhead
might be greatly reduced. According to our knowledge, there
is no systematic TM approach dealing with virtual worlds
of this nature. To cope with these issues and achieve better
performance, we propose a decentralised TM approach to
potentially handle complex hierarchical models [5], using a flat
structure in this paper. This work put more emphasis on actual
simulations for local causality constraint and comparison of
proposed method with non-synchronised and decentralised
approaches.

III. THE PROPOSED MECHANISM

This section presents a fully decentralised TM approach
for dynamic, and potentially hierarchical, models of scal-
able virtual worlds with restricted communication that are
described in section I. The basic aim of this work is to get a
consistent state of a given world. To illustrate the proposed
time advance mechanism, we use a simple world of 1*4
regional grid that is shown in fig.1. In future it will be extended
for the hierarchical models presented in [5]. Fig.1 highlights
two examples showing neighbouring regions with respect to a



region marked with a star. It gives us an idea about the regions
that might be directly affected by the events generated by a
region. Each region shows its current LBTS value, Lookahead
value, the latest LBTS values of adjacent regions, and status
of Local Queue. A circle highlights a federations with respect
to a federate with a star. We believe that the assumption
of constrained communication in conjunction with a fully
decentralised approach potentially reduces complexity and
delay with a decrease in the number of interacting servers. It
therefore improves interactive user experience. It is important
to note that the proposed TM approach uses a flat infrastructure
for direct communication between the servers.

Fig. 1. Illustration of the proposed Time Management with constrained
communication model.

We redefine the terms federate and federation for dynamic
hierarchical models with a decentralised control and con-
strained communication. A federate in this work is a server
executing a region. In general a region may have hierarchical
structure, but in our examples we restrict to simple square
cells. A federation is defined with respect to a federate and
is a collection of federates that share boundaries with it. In
general the federation associated with a federate must include
all those regions that might generate events that could directly
affect the federate. Hence, each federate participates in a
number of different federations, and the functionality of the
RTI is distributed among federates. The concepts of LBTS
and Lookahead values are used to maintain the local causality
constraint. Each federate in the proposed mechanism processes
its events when they are safe in consultation with the adjacent
federates. It carries out the central part of the mechanism
and follows a straightforward approach that is presented in
Algorithm 1. Each federate also provides its federate LBTS
value to other federates in its federation and guarantees never
to generate events earlier than the federate LBTS. Hence, the
local LBTS is calculated as the minimum of the neighbouring
federate LBTSs and the earliest queued event (if any). The
Lookahead is added to the local LBTS and is then sent to its
neighbours if and only if the LBTS increases. This definition
has a recursive nature and, especially at system startup, a
number of updates to the LBTS may occur before the local
LBTS reaches the point where queued events can be processed.
A push strategy is used to send federate LBTS values to
adjacent federates with the aim of reducing potential overhead
in communication and minimising temporary blockage. A
federate ensures that timestamped messages destined for a
neighbouring federate are delivered before sending its LBTS
information thus guaranteeing that messages will never arrive

in a federate’s past. Being a conservative algorithm, it always
considers a positive Lookahead value. It achieves traditional
guarantees and significantly reduces intermediate processing
elements (hops) and dependencies by directly communicating
with neighbouring regions.

Each federate executing Algorithm 1 allows a safe range
of event processing based on an LBTS value. It maintains
a LocalQueue, LBTS and Lookahead values, and an array
AdjacentLBTSValue that stores the latest LBTS value received
from adjacent federates. A value in AdjacentLBTSValue
changes dynamically when a new LBTS value is received.
The main loop is executed while the simulation is running. To
guarantee that the events are processed in their temporal order,
a new LBTS value is calculated at the start of each iteration.
Later on, an event with the earliest timestamp is processed if
it is safe (when its timestamp value is less than or equal to
the LBTS), and might generate more internal and/or external
events in response. It schedules new events and repeats this
process for the new earliest event. A simple condition is
used that never allows processing of an event with timestamp
greater than the current LBTS value. To simplify the consider-
ation of transient messages for an LBTS computation, a feder-
ate is forced to send any destined messages before sending its
LBTS value. The LBTS computation in the proposed method
is straightforward in terms of transient messages that might
require traversal of different components in traditional hierar-
chical systems. Time management calculations are simple and
communication is localised. At some times there might be
no activity in some federates. The federate must maintain its
LBTS value for its neighbours but could sleep until an event
or updated neighbouring LBTS value is received. When an
LBTS update arrives, the federate updates the corresponding
entry in AdjacentLBTSValue and wakes up the process if it is
sleeping. Similarly, when a new event arrives, it is added to
the LocalQueue and wakes up the process if necessary. The
primary aim of our work is to ensure a consistent world with
an emphasis on reducing communication delays and does not
consider Quality of Service requirements at this stage.

IV. EVALUATION AND COMPARISON

A. Illustrations

Consider, a federation B in fig.1 to explain the basic time
advance with an emphasis on executing safe events. The
current LBTS value is 3 and it wants to process an event with
timestamp 4. A new LBTS value is computed with the help of
adjacent federates that is smallest among a set of LBTS values
received from the adjacent federates (stored in NRecord) and
timestamp of the smallest event in the LocalQueue (timestamp
is the subscripted value). The new LBTS value in this case
is 4 which allows B to execute the event with timestamp 4.
The proposed approach does not impose global dependency
allowing federations far apart from each other to take indepen-
dent decisions for their time advance. Similarly, federations
having a common federate might be able to carry on with
their processing without blocking each other. However, in
certain situations a time advance might be temporarily blocked



Data: LocalQueue, LBTS, Lookahead, AdjacentLBTSValues
// Initialisations
// In general, the set of adjacent federates might change dynamically based on split and merge operations [5]
int n = Number of adjacent federates;
int AdjacentLBTSValue[n];
for (i = 0; i < n; i++) do

AdjacentLBTSValue[i] = 0; // changes dynamically with the LBTS value sent by adjacent federate i
end
int LBTS = -1;// In order to force distribution of an initial LBTS value
int NewLBTS = 0;
Insert initial event(s) to LocalQueue; // used for synchronisation with other federates
// Main loop of program for safe processing
while (System is running) do

// Update LBTS value if necessary
NewLBTS = Minn−1

i=0 (AdjacentLBTSValue[i]);// determines minimum of LBTS values of adjacent federates
if (LocalQueue has Events) then

NewLBTS= Min(NewLBTS, Timestamp of earliest LocalQueue event);
end
if (NewLBTS > LBTS) then

LBTS = NewLBTS;
Send (LBTS + Lookahead) value to the adjacent federates;

end
// Check for an event that is safe to process
if (LocalQueue has Events and Timestamp of earliest LocalQueue event ≤ LBTS) then

Process Event; // Remove the event and may generate new internal and external events
Schedule internal and external events if any; // External events are sent to adjacent federates via messages

else
Go to Sleep;

end
end

Algorithm 1. The Proposed Decentralised Time Management Approach

because of adjacent federates with smaller LBTS values. Since
each federate is continuously trying to advance its time, these
states are resolved quickly.

B. Simulation Results

To verify the effectiveness of the proposed mechanism, we
have simulated the temporal order of the events for a simple
scenario presented in fig.2. It also shows the flow of events for
a simple application that could violate local causality where
agents in regions raise flags in response to other events and
an observer should only see certain combinations. Region A
raises a flag. After a delay, region B copies A and, later, region
C copies B. Region D observes both B and C but hence should
never see a flag raised in C before B. However, if messages
are delayed and time management is not enforced correctly,
there is a potential threat to correct synchronisation.

Fig. 2. The simulated world and events flow model.

Region A is only adjacent to B and has no direct impact
on the activities of C and D. The purpose of its inclusion
is to show that the proposed mechanism need not consider
events from arbitrary regions. The aim of this simulation
is to determine if the proposed scheme maintains the local

causality constraint. The proposed method considers the entire
set of adjacent regions (hence D considers both B and C) and
therefore achieves a consistent state. However, the simulation
may fail to get a consistent state if a significant region is
ignored.

A simulation run of the proposed method is presented
in fig.3. It assumes an initial value of −1 for the LBTS
values and a constant Lookahead value of 3 for each region.
The initial values of NRecord (holding the LBTS values of
adjacent regions) are all 0. The local queue of region A has
an event with timestamp 1 (represented as I1) that triggers
the simulation while other queues are empty initially. The
events are marked as Xtimestamp, where X is the name of a
region and the value of a timestamp is the sum of LBTS and
Lookahead of a federate. An event generated in this simulation
aims to tell the adjacent regions that it has raised its flag. The
LBTS updates are sent to neighbouring regions via messages
that might have different random delays. A newly generated
event is placed in a corresponding Event Generated queue and
sent to the adjacent regions. When these events are received by
the corresponding regions, they are placed in local Queues and
processed in their temporal order. A processed event at a given
time is shown in bold and enclosed in square brackets. An
LBTS value is calculated based on the values in NRecord that
is updated each time a new LBTS for a region is calculated.
Since, the messages between a pair of regions are delivered
in sequence, the correct temporal order is maintained at any
given time. A region updates the corresponding status as a
flag set event is processed by a region. We have suppressed
simulation steps for time updates in fig.3 and 4 due to space
limitations.



Fig. 3. Illustration of a simulation run for the proposed Time Management approach.

At the start of the simulation (see fig.3) a number of LBTS
updates messages are processed before the initial event I1 at
region A is processed. It generates event A4 for region B
with timestamp 4 that is received at step 4. It updates its
LBTS value and sends a message to region B to update its
NRecord value. However, region B has to wait until time
update messages are processed thus allowing event A4 to
process at step 5. Region B generates event B7 for region C
and D. Each region after generating an update message sends
an LBTS update message which is processed by corresponding
regions in temporal order. The event B7 arrives at region C
at step 12, but it is received at region D at step 18, even later
than the response event C10 generated by region C for D (that
arrives at step 13). However, results show that the proposed
mechanism does not allow D to process event C10 until after it
receives and processes B7. This demonstrates that the events
are processed in their temporal order.

The same specifications are used to simulate a non-
synchronised approach with two different scenarios: in the
first scenario, D considers only its own time information; in
the second scenario, D considers C (but not B), in addition
to its own time information. The simulation result for the
first scenario is presented in fig.4. It is clear that at step
13, event C10 is processed before arrival of event B7, and
hence a causality violation has occurred. The second scenario
does the same and is therefore not included. We have also
simulated a peer-to-peer environment that considers the entire
set of regional LBTS values for the LBTS computation of a
region that introduces longer delay in the computation of a
new (effectively global) LBTS value. In this approach, region
A is considered for LBTS computations by C and D even
though it has has no direct impact and significantly increases
exchange of messages over the network. A region has to wait
for A’s time advance to proceed. The peer-to-peer approach
achieves the same results as our proposed method and are
also not included due to space limitations.

In summary, all regions affecting a federate must be part
of its federation, but no additional regions need be included.
Based on the simulation results, it is clear that the proposed
method maintains the local causality constraint. It considers a
limited number of regions and is therefore more scalable and
efficient compared with traditional centralised and distributed
approaches. It potentially reduces communication overhead
compared with peer-to-peer environments. In our examples
with small numbers of regions, local calculations are based
on a large proportion of the total regions, but in a large
scale simulation environment only a very small proportion of
regions would be involved in each calculation, making the
proposed method flexible and scalable.

Since, the proposed mechanism can potentially be used for
complex hierarchical models at a single level, a number of
parameters might be used to compare it with traditional ap-
proaches. These parameters include dependencies, number of
hops, complexity, delay, and scalability. It is worth mentioning
that some of these parameters are dependent on each other.
We believe that dependencies among the components and
number of intermediate processing points are basic reasons
for increased levels of complexity, larger delays, and poor
scalability. The traditional hierarchical approaches are compar-
atively scalable, and easy to implement but need to keep their
interfaces as simple as possible. However, with conservative
approaches dependencies among different components at mul-
tiple levels (as discussed in [20]) introduce a larger delay and
are therefore not easily scalable though better than centralised
approaches. A message in a distributed hierarchical structure
has to pass through a number of hops not only increasing
complexity but also delays. Our proposed mechanism elimi-
nates going through intermediate points by using direct com-
munication between interacting federates. Similarly, certain
federates cannot proceed further due to global dependencies
among components at different levels in existing mechanisms
thus degrading overall interactive experience. By using a fully



Fig. 4. Illustration of a simulation run for the non-synchronised approach.

decentralised approach, the proposed method allow different
federations to process and advance their time without waiting
for others having no impact on them.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a simple, but flexible, decentralised
TM infrastructure and illustrated it with the help of a simple
scenario. It is simple, scalable and allows a federation to take
independent decision with distributed control among federates
for direct consultation of interacting federates. It depends on
the realistic assumption that events can only affect a finite and
known set of adjacent regions. Simulation results support our
claim that it achieves correct temporal ordering for randomly
generated events. Our future work includes implementation
and detailed analysis of the proposed decentralised mechanism
together with our proposed JoHNUM infrastructure [5] using
an open source virtual world development environment called
OpenSimulator [24].
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