Integration of P2P and Clouds to Support Massively Multiuser Virtual Environments

MMVE/Netgames – Taipei 17 Nov 2010

Laura Ricci Massimo Coppola <u>Emanuele Carlini</u>

Contrail is co-funded by the EC 7th Framework Programme

- Initial design of an MMVE architecture
 - Exploiting and adapting existing techniques from different fields
 - Focus on passive objects
- Motivations
- Architecture issues
 - Passive object management
 - Latency-aware mapping
 - Interest Management
 - Consistency Model
- Conclusions

- Olient/Server: classical commercial solutions
 - Expensive: size, scalability, operating costs
 - Total platform control: trust and reliability
- P2P architectures
 - P2P scales cost-free, unreliable
- Clouds sit somewhere in the middle
 - Dynamic and reliable, but not free
- Our aim: merging together these resources

- We target next generation clouds
 - In the future the problem will be the bandwidth: easy to add cluster, costly to add bandwidth
- Our approach is promising but is still to be validated
 - Easy to integrate different kind of computational resources (even potentially non trusted)
 - Built-in mechanisms to provide failure tolerance
 - Latency-aware task assignment
 - Backup for sensible information
 - Optimistic consistency model

Passive Objects Management

Object Management

- Passive objects are spread on DHT
- A VN contains the state of objects
 - Acts as the server
 - Security checks cheating mitigation
- Maintains DHT infrastructure
 - Manages connections routing tables
 - Replicas management
- VN as workload unit in the DHT
 - Cost of each VN is measurable in terms of
 - Required bandwidth
 - Computational power

- Distribution of VNs among heterogenous resources
 - Free resources are unreliable
 - bVN is spawned whenever a VN is assigned to an unreliable node

- BackupVN manages untrusted/unreliable resources
 - Assigned to a reliable node
 - Acts as secondary server
 - Does cheating mitigation
- The "unreliable" VN becomes a uVN limited functionalities
 - Maintains the topology connections
 - Manages the status of the objects
 - Periodically sends updates to bVN

Locality-aware mapping of Virtual Nodes

- VNs are distributed among different resources
 - Reallocation
- Load balancing
 - Relief heavy loaded machines
 - Turn-off poorly used machines
- Node failure
- Interactivity
 - Latency

- Aim: find the "closest" node for the set of peer connected to a VN
 - NCS coordinates to map the distances between peers and servers
 - Overlay Network
 - Delauney
 - Leader Election to find the best server for a set of peers

Interest Management

Interest Management

- Two phases
 - Objects discovery
 - Objects management
- Two different specialized structures for the discovery and management.
- [Abdallah et al. 2008]
 - We use two DHTs

Assumption: moving objects

Interest Management with two DHTs

Interest Management with two DHTs

- Random mapping in management DHT
- Spatial mapping in discovery DHT

Consistency Model

- Aim: tuning the bandwidth requirements when managing replicas
- VFC: optimistic consistency model developed for mobile games
 - [Santos et al. 2007]
- 3D vector: 3 consistency view
 - Time delay
 - Sequence number of operation
 - Value magnitude of change

- Extendible & Adaptable
 - Adding/removing views according to the context
- General enough to be used:
 - Among VNs
 - Between bVN and uVN
 - Between server and client

- The presented ideas can result in
 - an MMVE environment
 - Exploit different kind of HW resources
 - Focused on bandwidth saving

Our current work includes various tools and results

- From other research groups in various fields
 - VNs, VFC, etc...
- That we are still studying, at different stages of investigation
 - bVN, locality-aware server mapping

From our group (already studied and implemented)

- One-Hop DHTs for request with temporal locality
- Bandwidth tuning when disseminating data in DHTs
- Locality hash functions

E. Carlini, M. Coppola, D. Laforenza and L. Ricci, Reducing Traffic in DHT-based Discovery Protocols for Dynamic Resources, CoreGrid ERCIM Working Group Workshop on Grids, P2P and Service Computing at EuroPAR, 2009

E. Carlini, M. Coppola, L. Ricci, "Modelling PUSH-PULL Data Dissemination over Distributed Hash Tables" (under submission)

The End

Thank you! Questions?

contra	il	
		open computing infrastructures for elastic services
Xtreem	OS	
Enabling for the G	g Linux àrid	

Contrail: Open Computing Infrastructures for Elastic Services is funded by the EU under the Seventh Framework Programme Project No. 257438, 36 months span starting October 2010

The XtreemOS project (June 2006-September 2010) was funded by the European Commission under contract IST-FP6-033576

Extra Slides