
`

An Implementation of a First-Person Game on a Hybrid Network
Anthony Steed*, Bingshu Zhu

Department of Computer Science, University College London

ABSTRACT
The majority of current networked virtual environments and
networked games use a client-server model of networking. This
makes synchronization of the environment simple, but it adds
additional latency between any two clients. Peer-to-peer
networking is a common alternative, but whilst these systems
have potentially lower latency, they are more difficult to scale and
lack a single point of synchronization.

In this paper we demonstrate an implementation of a form of
hybrid networking, where clients communicate important state to
a server, but communicate rapidly changing state peer-to-peer. By
using the frontier set concept, we can make this scale since we
ensure that only relevant position updates are sent peer-to-peer.
The implementation is done as a modification to the game Quake
3 Arena. We show that the latency between clients is indeed
reduced significantly for position events, and that this is achieved
at a relatively small increase in network traffic.

CR Categories: C.2.4 [Computer Communication Networks]:
Distributed Systems; I.3.2 [Computer Graphics]: Graphics
Systems

Keywords: frontier sets, latency, synchronization, network
scalability, networked virtual environments.

1 INTRODUCTION
Networked virtual environments (NVEs) pose a number of
challenges to system designers [22]. The system designer must
balance the requirement of ensuring consistent behavior of objects
across a possibly widely distributed set of communicating clients,
with the requirement of ensuring that any individual client has a
continuous and usable experience. This is especially true in
networked games such as first person games, where complete
consistency between clients is unachievable across wide areas at a
rate acceptable to the frenetic pace of the game. Thus in this type
of games, the clients commonly run in a partially desynchronized
manner. The main decision that a system designer has to make is
to choose between a client-server system where synchronization is
relatively easily determined by the server but where all messages
must go via the server, and peer-to-peer systems where the
synchronization problem is exacerbated, but the latency of any
particular event is minimized.

 In this paper we investigate a hybrid networking model, where
communication is a mix of peer-to-peer and client-server, for the
game Quake 3 Arena. Normally peer-to-peer communication in
such a situation would be prohibitively expensive, however we
use frontier sets to partition the world so each peer in the network

can independently decide whether to send messages to other peers
and thus each peer only communicates their position information
with others peers that are likely to be visible. Bypassing the server
in this way allows minimal latency between generation and
rendering of positions of players in the game.

 Reducing some of the sources of latency should provide a
better experience for the players. This is because it can remove
some discrepancies due to motion extrapolation and rollback that
occur in such games where the server determines critical events
and communicate these events to clients that are simply
extrapolating a previous state. We show that hybrid networking is
feasible in a real game scenario, and that, in packet count and
throughput terms, it has a relatively small impact on the network
load.

2 RELATED WORK
Today’s NVEs have emerged from technologies developed for
military simulators. Two dominant architectures have been
pursued: peer-to-peer systems and client-server systems. SIMNET
was an early example of a peer-to-peer system where each client
simply broadcast information about its state on the network [18].
Such systems require a lot of bandwidth to cope with the volume
of messages. There is also a general problem in ensuring
consistency and security, problems acknowledged in the early
MiMaze system [7].

The main alternative to peer-to-peer systems is client-server
systems. In this type of system all clients connect to a server and
that server is responsible for computing the state of the game and
distributing it to all the clients. Consistency is easily managed
since there is one canonical copy of the game state on the server.
However a server introduces extra latency because any update to
the game state needs to be relayed by the servers. The issue of
latency is very important for real-time games, especially first-
person shooter games which have become very popular in the last
few years [2][10].

2.1 Partitioning
In order to have environments that scale to large numbers of users
one common approach is to partition the world and only relay a
subset of all events and state to each client [20].

One of the first systems to employ a partitioning scheme was
the NPSNET system [16]. NPSNET divides the virtual world into
fixed sized hexagonal cells. Each participant sends information
(e.g. location updates) to their current local cell but can choose to
receive information from potentially many cells that fall within
their area of interest. The Spline system [26] divides a virtual
world into arbitrary-shaped locales that are stitched together using
portals. Each locale defines its own co-ordinate system and
participants receive information from their current locale and its
immediate neighbors. The ability to use variable-sized locales
provides additional flexibility in coping with less predictable
entities and is more appropriate for indoor environments.

Many games are built with environment models that have a lot
of occlusion between models. One technique that is often used in
such games is potentially visible sets (PVS) [27]. A PVS can be
used to exclude a pair of entities from consideration for simulation

*A.Steed@cs.ucl.ac.uk

purposes because they are not mutually visible. However this
visibility must be evaluated every time the entities concerned
move. The RING system exploits a PVS data structure to increase
the scalability of a client-server virtual environment [8]. In the
RING system, a server culls messages if it knows that a client
can’t see the effect of the message.

Other systems propose to partition groups dynamically,
depending on local awareness and neighborhood relationships
[14][15][19]. These and similar schemes could provide for highly-
scalable peer-to-peer networking, but have not as yet been used in
practical implementations.

2.2 Latency
Latency in NVEs arises because of the physical transmission of
the data and the cumulative processing latency of sender, receiver
and router processes. Latency immediately induces inconsistency
because an individual client “sees” the behavior of all other clients
after a delay. Thus the player reacts to state when at the remote
site that state may have already changed. A typical way this
manifests in online FPS games is that the client sees and shoots at
a target, but that target has moved. The role of the server is to be
neutral and resolve such inconsistencies in as fair a way as
possible. However, introducing a server causes slightly different
problems, where players might think they have dodged a bullet,
but because the server “sees” their behavior slightly delayed they
subsequently get informed that they were shot in the past. This
may require the client to roll-back to a previous state. A thorough
survey of latency including a discussion of the inconsistencies that
arise and strategies to combat them is given in [5][6].

2.3 Hybrid Networking
Hybrid networking is a term that is commonly used to refer to
services that combine client-server and peer-to-peer
communications. For example, Chen & Muntz propose a peer-
clustering scheme that distributes some server responsibilities
amongst peers [4]. In that scheme servers are necessary to support
critical tasks, but peer clusters take over the handling of local
interactions.

Our use of hybrid networking embodies a similar principle of
delegating some responsibilities to the clients, but the goal is
simpler: to reduce the latency with which certain events are seen
by the clients.

2.4 Frontier Sets
The frontier set was introduced by Steed & Angus [24][25]. It is a
concrete example of a more general class of algorithm called
update-free regions [9][17]. These algorithms exploit the fact that
if any two players know instantaneously where the other is, they
might both be independently able to establish that they do not
need to communicate until they leave an area. A simple example
is two players on either side of a long wall. Until one or the other
reaches the end of the wall, they can’t possibly see their
counterpart: for mutual visibility to be possible, one of them must
round the wall.

A frontier set reifies this concept in the specific situation of a
world where there is a visibility relationship such as a PVS [27]. If
the environment is divided in to regions of space (or cells) then
for any cell, it will be possible to identify openings (or portals)
through which other cells can be seen. For any cell, it is possible
to explicitly compute which other cells are visible from that cell,
because if a cell is visible then there must be a line of sight
through all the portals between them.

A single frontier is defined relative to pairs of cells in that
subdivision. Given two cells A and B, a frontier comprises two
sets of cells FAB and FBA such that no cell in FAB is visible to a cell
in FBA and vice-versa. Figure 1 gives an example of a frontier.

The complete set of frontiers for a whole environment will be
referred to as a frontier set.

2.4.1 Example Usage
Consider two users moving around the environment depicted in
Figure 1a. If Anne is in cell A, and Bob is in cell I at time t0 then a
frontier can be established, FAI = {A,B,C,F}, FIA = {G,H,I} as
shown in Figure 1a. If Anne remains in the set of cells FAI and
Bob remains in the set of cells FIA then they can never see each
other. If this were a networked virtual environment this would
mean that if Anne and Bob both exchanged location information
at t0 they would not have to send any further updates.

a. b.

c. d.

A B C

D E F

G H I

A B C

D E F

G H I

A B C

D E F

G H I

A B C

D E F

G H I

Figure 1. An example of frontiers in use. As users Anne and Bob
move between cells, frontiers can sometimes be established. a)
Anne and Bob are in cells A, I respectively. A frontier exists FAI =

{A,B,C,F}, FIA = {G, H,I}. b) A frontier exists FEH = {A,B,C,E,F}, FHE =
{H,I}. c) No frontier exists because cell D can see cell H. d) A

frontier exists FDI = {A,B,C,D,E,F} and FID = {I}.

The work of Steed & Angus was done on simulations using the
Quake II code base [24][25]. The work presented in the remainder
of this paper is live, playable system, implemented as a
modification to the GPL version of the Quake 3 Arena code.

3 ARCHITECTURE

3.1 Strategy
Even if peer-to-peer networking can be made to scale reliably, for
many types of application, it will still be desirable to have a
centralized server doing specific, application-critical state. This
could be state that must be synchronized quickly so that clients do
not diverge, or state that no client can be trusted to compute. In an
FPS, examples might be the game score, and individual kills.
However, much information is transient and updated frequently.
In many systems, and particularly FPSs, this could be positions of
players and other entities. In some engines such classes of
information might even be separated on to different transport
layers. The rationale for this is that if a position information
packet is lost, it doesn’t matter, and might even be detrimental to
performance to retransmit the packet, as would be done with TCP.

The strategy with hybrid networking is thus to classify
changing state into that which can be sent peer-to-peer, and that
which needs to go client-server. There could be overlap between
the two classes; that is information that is sent to both server and
peer clients. Because sending directly to peers is low latency, this
could be done where there are situation where the client believes
that its information is correct and will not be altered by the server.
A good example is position information in dynamic simulations.
These systems commonly do dead-reckoning of position [18].
When a client observes that it needs to update the models of other

players, it would be best to notify all clients directly, as this will
provide for lowest error when the dead-reckoning models adapt to
the new information. Similarly in an FPS the information that I
fired a weapon is useful to communicate as fast as possible to
other players. The server in this FPS still needs to know the
position and weapon firing immediately, as it needs to determine
the overall effect of this.

A final strategic reason for distributing data both client-server
and peer-to-peer is to provide redundancy for time-critical
information, in case of loss of either peer-to-peer or client-server
or server-client packets. Indeed, in certain situations, it might be
necessary to fall-back to sending via a server anyway, because one
of the peer-to-peer routes cannot be established due to firewall or
other constraints.

3.1.1 Use of Frontier Sets
Although simply reducing the latency may be desirable in some
situations, peer-to-peer traffic potentially incurs an overhead on
network traffic. A naïve peer-to-peer algorithm generates O(N2)
network traffic each frame, where N is the number of clients. A
perfect peer-to-peer algorithm would send events only when they
are necessary because they would be seen by the receiver.
Obviously such an algorithm is un-implementable because the
client would have to have prior knowledge of where the receiver
was in order to know whether to send a packet. We thus propose
to use frontier sets as an initial strategy to reduce traffic and make
the system scale. It would be eminently feasible to have the server
dynamically indicate to each client which other clients it would
need to communicate to. The server could use a visibility data
structure to determine this. However this introduces some latency
in to the set up of communication.

Frontier sets work exclusively peer-to-peer, and in simulations
for an FPS game they have been shown in simulation to achieve
performance on the network very similar to the perfect peer-to-
peer algorithm [25]. Further, in the FPS simulations, where the
data sent peer-to-peer did not need to additionally be sent to the
server, the frontier set algorithm was more efficient than client-
server algorithm in certain situations. Frontier sets are relatively
easy to implement, as their calculation does not need any
negotiation with the peer or server. Using a peer-to-peer algorithm
also reduces the latency of set-up of a particular peer-to-peer data
flow: it doesn’t require a server computation and thus data is sent
from one peer to another as soon as the sending peer detects that it
is necessary.

3.2 Impact on Latency
The key advantage of using peer-to-peer information is that it
provides for lower latency: the information travels over only one
link not two. However, there is another important advantage: even
if the server is close to the “mid-point” of the link, that is the
peer1-peer2 trip time is close to the sum of the trip time from
peer1-server and server-peer2, the fact that we are cutting out a
server process means that jitter in packet arrival time can be cut
dramatically. Because the peers and server all update at a given
rate, the server introduces a new source of process latency.

Once we introduce hybrid networking, each client sees their
peers with minimum latency, thus reducing instantaneous
inconsistency. However, furthermore, under the assumption that
peer-to-peer and peer-server transit times are similar, the server is
actually using the same state for calculations as the other peers are
displaying at that time.

4 IMPLEMENTATION IN QUAKE 3 ARENA
Quake 3 Arena [11] is a first-person shooter that was originally
released in 1999. It uses a client-server architecture. A machine
can be set up as a dedicated server, or one participant can host a

server. The server has an update rate of 20 Hz [1, p. 163]. Typical
games have up to 32 participants. Like previous games in the
series, Quake 3 Arena uses a cell partitioning of the world and
there is PVS structure across this. The source code for Quake 3
Arena is available under the GPL, so it is easily extensible for
experiments such as ours.

The first alteration that needs to be made is to set up data
structures that allow frontier creation. As discussed in [24] in the
context of Quake II, when a game world is loaded, the PVS data
structure is converted in to an enhanced-PVS data structure. This
takes 10-20 seconds depending on the map, and could be done as
a pre-process.

The second alteration is to add a capability to notify each client
of all its peers, so that they can make direct connections. There are
additional messages to notify of clients leaving and departing the
session.

The third alteration is the networking functions. Quake 3 Arena
uses UDP distribution, with its own reliability mechanism.
Snapshots of data are sent between client and server, and any
resend is triggered only if necessary. Each snapshot packet
contains a number of data structures, and we add a new data
structure which is a peer-to-peer position data structure. The
sending peer client simply sends a packet containing this data
structure to the UDP port on the receiver client that the server
normally connects to, and thus the receiver handles the packet as
it would any packet from the server.

The main logic is thus on the sending side. Each client must
know whether or not it currently has a frontier with another client.
If it doesn’t have one, based on the last position packet received,
doesn’t know, or it has left its half of the frontier then it sends a
position packet.

To implement this each client calls a function,
CL_SendNetworkUpdate each frame. The main job of this
function is to establish if, since the last frame, this client or one of
other clients have left the agreed frontier. If they have, they get rid
of the current frontier. If there is no current frontier then it sends
an update to the other client. Finally it tries to establish a new
frontier with the current cells for this client and the other client.
The client keeps two arrays frontierThis and frontierOther. Each
element of these arrays is one of the sets of cells from a frontier.
The space for each element much be a binary vector the length of
the maximum number of cells in a map. This is not large
compared to other static resources that are allocated in memory by
the game engine. The process of building frontiers is almost
identical to the process discussed in [25] and the implementation
borrows heavily from the Quake II code. In essence though, the
process requires a single iteration through the list of cells in the
map, to construct the two cells lists for the frontier, if they exist. If
the two cells are mutually visible, this function returns
immediately.

One key aspect of the implementation is that peers send
position updates at their frame rate. This can be much more than
would be relayed by the server (i.e. 20Hz), but is a reasonable
strategy for some situations as it results in much smoother
movement. In our tests described in the next section we used
fairly modern PCs, and Quake 3 Arena does not stress modern
graphics cards. If some of the machines on the network were
likely to be more stressed, then rate limiting the peer-to-peer
sending would be necessary.

Final changes included logging capabilities to determine the
latencies and data usage of the different networking routes. The
server process collates all data logged by individual clients.

5 PRELIMINARY RESULTS
Preliminary analysis was done on a small number of two player
games to establish throughput and latency characteristics. Latency

is tricky to calculate due to the problems inherent in
synchronizing clocks across the network. Figure 2 gives a
reference diagram for the timings we have used.

tA1 to tA4 are client A’s local time; tB1 to tB5 are B’s local time and
tSV1 to tSV2 are server’s local time. In the game, when client A
shoots towards client B at time tA1 (meanwhile, B is at time tB1), A
will send a packet to B indicating this event. This function is
added for testing purpose. A will also send a packet to server and
that is an original standard function of Quake 3 Arena. B receives
this packet at time tB2 and the corresponding time at A is tA2. B
processes this event then sends back a response packet to A at
time tB3. A gets this response packet at time tA4. The P2P one-way
transmission latency ∆ t1 is considered to be the average of tA2 -
tA1

and tA4 - tA3. Since it is hard to synchronize the time on client A
and B, the measurable time includes: tA1, tB2, tB3, tA4. Thus the one
way P2P transmission is:

 4 1 3 2

1
() ()

2
A A B Bt t t tt − − −

∆ =
.

The P2P overall latency (two-way transmission latency plus
processing latency) is simply:

2t∆ =
4 1A At t− .

When A shoots B, another packet is sent to the server. The server
gets it at time tSV1 then sends a packet to inform B at time tSV2. tSV2-
tSV1 is the processing latency at the server. B gets this packet from
server at time tB5. In the testing plan, overall latency of the
message through server is measured and denoted as:

3 5 2 1B Bt t t t∆ = − + ∆ .

The three latencies were measured by observing 20 packets sent
both ways through the network, as shown in Table 2. We can see
here that there is a very marked difference between the one-way
and client-server communication.

Data rates were also calculated. Rates vary drastically
depending on whether the two players can see each other. In Table
1, Test 1 is a situation when clients are in valid frontier sets so
they do not need to communicate. In Test 2 valid frontier sets
have never been able to be set up. The figures show that clients
are sending packets peer-to-peer at the frame rate. In this extreme
situation communication between client and server is much less
than that between clients. This is because the original Quake 3
Arena server does not send packets to client at the frame rate, but
at a fixed lower rate. In addition, Quake 3 Arena does delta-
compression on the data packets so packet size is normally small.
From the table it could be calculated that the average packet size
of client-server Quake 3 Arena is 27.8 bytes and that of peer-to-
peer Quake 3 Arena is 19.5 bytes. The new Quake 3 Arena being
tested only sends player position information peer-to-peer so 19.5

is quite a high number. In the future the modified Quake 3 Arena
could also perform compression on the packets. Test 3 is close to
the real situation of playing. In this situation the traffic between
the peers is roughly 25% of that to the servers.

6 CONCLUSIONS
We have demonstrated a practical implementation of hybrid
networking as a modification to the Quake 3 Arena game. We
showed that we could reduce instantaneous inconsistency by
reducing client-client position update latency and that this could
be done with reasonable increase in network traffic.

Currently this is a proof-of-concept demonstration, though there
is no theoretical reason why this should not scale to support larger
numbers of players. Although we only presented preliminary tests
with two players, the game does function correctly with more
players and large scale tests are being planned. The previous
simulations on Quake II, [24][25] should indicate that the total
packet overhead for 16 or 32 player games would not be onerous .

TEST CLIENT FRAME SV
PACKET

CL
PACKET

SV
BYTE

CL BYTE

1 A 7997 1795 0 35484 0
B 7996 1795 0 50235 0

2 A 6949 1565 6957 51980 132541
B 6957 1565 6949 57605 138111

3 A 9822 2209 582 68620 11659
B 9817 2209 582 46049 11182

Table 1: Packets and bytes sent by each client, both to the server (SV) and to the other client (CL). The tests are distinguished
by the amount of time which the two players can see each other.

Figure 2. Time stamps used in the calculation of
difference in latency for client-server and peer-

to-peer communication.

Timing ∆ t1 ∆ t2 ∆ t3

Mean 6.375 12.95 28.25
Std.dev 2.804 5.633 11.77

Table 2 Timings of peer-to-peer single way, peer-to-
peer two way, and client-server communication

Future work will look at several issues: delegating more
responsibilities to the players, stress testing with more players,
subjective and qualitative review of the impact of latency
reduction on player experience. We would highlight some
expected problems that are common to any peer-to-peer scheme,
such as maintaining consistency when there are dense clusters of
players. This is could be a problem because at least with a client-
server system the peak load on the network, servers and clients, is
well known, whereas in peer-to-peer systems peak load is harder
to calculate.

The modified Quake 3 Arena code is available on
http://www.cs.ucl.ac.uk/staff/A.Steed/

REFERENCES
[1] ARMITAGE, G., CLAYPOOL, M., BRANCH, P. 2006 Networking

and Online Games: Understanding and Engineering Multiplayer
Internet Games, Wiley. k

[2] BEIGBEDER, T., COUGHLAN, R., LUSHER, C., PLUNKETT, J.,
AGU, E., AND CLAYPOOL, M. 2004. The effects of loss and
latency on user performance in unreal tournament 2003®. In
Proceedings of 3rd ACM SIGCOMM Workshop on Network and
System Support For Games (Portland, Oregon, USA, August 30 - 30,
2004). NetGames '04. ACM Press, New York, NY, 144-151.

[3] CECIN, F. R., DE OLIVEIRA JANNONE, R., GEYER, C. F.,
MARTINS, M. G., BARBOSA, J. L. 2004. FreeMMG: a hybrid
peer-to-peer and client-server model for massively multiplayer
games. In Proceedings of 3rd ACM SIGCOMM Workshop on
Network and System Support For Games (Portland, Oregon, USA,
August 30 - 30, 2004). NetGames '04. ACM Press, New York, NY,
172-172.

[4] CHEN, A. AND MUNTZ, R. R. 2006. Peer clustering: a hybrid
approach to distributed virtual environments. In Proceedings of 5th
ACM SIGCOMM Workshop on Network and System Support For
Games (Singapore, October 30 - 31, 2006). NetGames '06. ACM,
New York, NY, 11.

[5] DELANEY, D , WARD, T., S.MCLOONE 2006. On consistency
and network latency in distributed interactive applications: a survey--
part I, Presence: Teleoperators and Virtual Environments, v.15 n.2,
p.218-234, April 2006.

[6] DELANEY, D , WARD, T., S.MCLOONE 2006. On consistency
and network latency in distributed interactive applications: a survey--
part II, Presence: Teleoperators and Virtual Environments, v.15 n.4,
p.465-482, April 2006.

[7] DIOT, C. GAUTIER, L. 1999. A Distributed Architecture for
MultiParticipant Interactive Applications on the Internet. In IEEE
Network, 13(4), 6-15.

[8] FUNKHOUSER, T. A. 1995. RING: A Client-Server System for
Multi-User Virtual Environments. In 1995 Symposium on Interactive
3D Graphics. 85-92, April 1995.

[9] GOLDIN, A., GOTSMAN, C. 2004. Geometric message-filtering
protocols for distributed multiagent environments. Presence:
Teleoperators and Virtual Environments, 13(3), 279-295.

[10] HENDERSON, T. 2001. Latency and User Behaviour on a
Multiparticipant Game Server. Networked Group Communication
2001, Third International COST264 Workshop, London, UK,
November 7-9, 2001 1-13

[11] IDSOFTWARE. 1999. Quake 3.
http://www.idsoftware.com/games/quake/quake3/

[12] IEEE. 1993. ANSI/IEEE Standard 1278-1993, Standard for
Information Technology, Protocols for Distributed Interactive
Simulation, March 1993.

[13] KELLER, J., SIMON. G. (2003) Solipsis: A massively multi-
participant virtual world. In Proceedings of the 2003 International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'03).

[14] KAWAHARA, Y., MORIKAWA, H., AND AOYAMA, T. 2002. A
peer-to-peer message exchange scheme for large scale networked
virtual environments. In Proceedings of the the 8th international
Conference on Communication Systems - Volume 02 (November 25
- 28, 2002). ICCS. IEEE Computer Society, Washington, DC, 957-
961.

[15] KNUTSSON, B. LU, H., XU, W., HOPKINS. B. (2004) Peer-to-
peer support for massively multiplayer games. In Proceedings of the
23rd Conference of the IEEE Communications Society (Infocom
2004), Washington, D.C., 2004. IEEE Computer Society.

[16] MACEDONIA, M. R., ZYDA, M. J., PRATT, D. R., BARHAM, P.
T., ZESWITZ, S. 1994. NPSNET: A Network Software Architecture
for Large Scale Virtual Environments. Presence: Teleoperators and
Virtual Environments, 3(4): 265-287, MIT Press.

[17] MAKBILI, Y., GOTSMAN, C., BAR-YEHUDA, R. (1999)
Geometric Algorithms for Message Filtering in Decentralized
Virtual Environments. Proceedings of the ACM Symposium on
Interactive 3D Graphics, 39-46.

[18] MILLER, D., AND THORPE, J. 1995. SIMNET: the advent of
simulator networking. Proceedings of IEEE, 83(8): 1114-1123.

[19] MORILLO, P., MONCHO, W., ORDUÑA, J.M., DUATO, J. 1996.
Providing Full Awareness to Distributed Virtual Environments
Based on Peer-to-peer Architectures, in Computer Graphics
International (CGI'06), volume 4035 of Springer LNCS, pp. 336-347

[20] MORSE, K. L., BIC, L. AND DILLENCOURT, M. 2000. Interest
management in large-scale virtual environments. Presence:
Teleoperators and Virtual Environments, 9(1):52--68, MIT Press.

[21] QuakeWorld, http://en.wikipedia.org/wiki/QuakeWorld
[22] SINGHAL, S. ZYDA, M. 1999. Networked Virtual Environments:

Design and Implementation. Addison-Wesley.
[23] SMED, J. KAUKORANTA, T. AND HAKONEN, H. 2001. Aspects

of Networking in Multiparticipant Computer Games. In Loo Wai
Sing, Wan Hak Man, and Wong Wai (eds.), Proceedings of
International Conference on Application and Development of
Computer Games in the 21st Century. Hong Kong SAR, China, Nov.
2001, 74-81.

[24] STEED, A., ANGUS, C. 2005, Supporting Scalable Peer-to-peer
Virtual Environments Using Frontier Sets. In Proceedings of the
2005 IEEE Conference 2005 on Virtual Reality (March 12 - 16,
2005). VR. IEEE Computer Society, Washington, DC, 27-34.

[25] STEED, A., ANGUS, C. 2006, Enabling scalability by partitioning
virtual environments using frontier sets. Presence: Teleoperators and
Virtual Environments, 15 (1). pp. 77-92.

[26] STERNS, I.B., YERAZUNIS, W.S. 1997. Diamond Park and Spline:
Social Virtual Reality with 3D Animation, Spoken Interaction and
Runtime Extendability. Presence: Teleoperators and Virtual
Environments, 6(4), 461-481, MIT Press

[27] TELLER, S.J. SEQUIN, C.H. 1991. Visibility Preprocessing for
interactive walkthroughs. Computer Graphics (Proceedings of
SIGGRAPH 91), 25(4):61-90.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

