Towards an Authentication Service for Peer-to-Peer
based Massively Multiuser Virtual Environments

Arno Wacker*, Gregor Schielef, Sebastian Schuster*, and Torben Weis*

*University of Duisburg-Essen
Duisburg, Germany
{arno.wacker|sebastian.schuster|torben.weis } @uni-due.de

Abstract—1In this paper we propose a distributed authenti-
cation service for peer-to-peer (P2P) based massively multiuser
virtual environments. Such a service is necessary to provide
security, e.g. preventing a user’s account being stolen or the
user being impersonated. We describe two variants of our
authentication service. The first uses certificates and a central
certification authority to ensure the validity of user-generated
public keys. These keys are then used to sign messages sent by
the users’ peers. The second variant distributes the users’ public
keys in the P2P network and uses quorums to verify them.

I. INTRODUCTION

Massively multiuser virtual environments (MMVEs) allow
a large number of users to participate in a shared virtual
environment via the Internet. Security is a crucial requirement
for such systems, to guarantee their smooth operation [1].
Otherwise, users may e.g. pose as somebody else or steal other
users’ data. This is especially true since the participants of
a large scale system typically do not know each other and
therefore cannot trust each other.

To provide security, we first must guarantee message au-
thenticity, i.e. a user must be able to identify the sender of
a message reliably. Building upon this, other goals can be
realized, e.g. data confidentiality or integrity.

In this paper we discuss how to provide message authen-
ticity in MMVEs. We restrict our discussion to peer-to-peer
(P2P) based systems. In such systems, the virtual environment
is provided and managed by the participating users’ computers
themselves, instead of a centralized server, as in a client/server-
based MMVE.

Our approach is based on certificates and signed messages.
We depict two variants. First we discuss a straight forward
approach using a Certification Authority (CA). This approach
builds on well known techniques. Secondly, we propose a
novel approach that is based on replicating public keys in the
P2P network. This approach is still work in progress. However,
in our opinion it offers a lot of potential for future research
activities.

The paper is structured as follows. First, we present our
system model and introduce two types of MMVEs, which need
to be distinguished when developing an authentication service.
After that we discuss requirements for our authentication
service. We then provide an overview of related work and

TUniversity of Mannheim
Mannheim, Germany
gregor.schiele @uni-mannheim.de

present our approach. Finally, we offer a short conclusion and
some thoughts about future work.

II. SYSTEM MODEL

We define an MMVE as a persistent virtual environment that
is shared by a large number of users worldwide. The number
of users is a priori undetermined and may change dynamically.
A P2P-based MMVE is a special kind of MMVE that is
executed cooperatively by all users’ computing devices, called
peers. Each device is connected to a common communication
network, e.g., the Internet. Using this network, the peers
form a connected overlay network, the so-called P2P (over-
lay) network. To participate in the MMVE, a user activates
his device and starts the preinstalled MMVE software. The
software logs into the P2P network and the user can start
operating in the MMVE. Each user is represented in the
MMVE by a special character, called his avatar. Conceptually,
our approach is able to handle multiple avatars per user.
However, in this paper we restrict each user to one avatar and
use both terms interchangeably. This makes the description of
our approach easier to understand. To operate in the MMVE,
the user directs his avatar to perform actions for him, e.g.
moving or interacting with other users’ avatars. Each activity
is distributed to other peers and processed by them, e.g. by
updating the state of the MMVE. After the user is done, he
stops the software and deactivates the device.

Our approach assumes the existence of an underlying struc-
tured P2P network that can be used to store and retrieve
data, e.g. a distributed hash table (DHT). The P2P network
must support four operations, discussed below. The operation
storeObject (pos, data) stores a data item at a given
(logical) position in the P2P network. Using the position,
the P2P network determines a set of peers and stores the
data item at them. The specific algorithm to do so depends
on the used P2P network. Different positions are mapped to
different peer sets, if possible, to distribute the data evenly.
Due to peer fluctuations, the peers responsible for a given
position may change over time. We assume that the P2P
network detects this and relocates the involved data items
automatically. The reason for using a replicated storage is to
ensure that data items are persistent. Otherwise, when a peer
is lost unexpectedly, data may be lost. We assume that the

P2P network contains consistency between all replicates of
a given data item. With retrieveObject (pos) we can
retrieve a data item from the P2P network. The parameter
pos specifies the logical position of this item in the P2P
network. The network automatically resolves the position to a
set of peers and retrieves the data item from them. To delete
a data item stored at a given logical position, the operation
deleteObject (pos) can be used. It determines all peers
saving the data item and instructs them to delete it. These
three operations realize a simple distributed data space. In
addition, the P2P network allows peers to send data messages
to each other, using the send (peer, data) operation.
It sends a given data item reliably to the specified peer. In
the peers@play project we are developing a P2P network
that fulfills all properties discussed above. This network can
be used to realize our approach. Its exact implementation is
beyond the scope of this paper.

III. OPEN VS. MODERATED MMVES

We distinguish two types of MMVESs, moderated and open
ones. A moderated MMVE is operated by a specific system
operator. The operator is responsible for managing the MMVE
and its participants. As an example, the operator decides
which user may participate in the MMVE. To do so, users
are normally expected to register with the operator before
entering the MMVE. The operator may also decide to remove
a user from the MMVE, e.g. in case of the user violating the
license agreement. Clearly, all users have to trust the operator.
A typical example for this type of MMVE is a commercial
system, e.g. an online game.

An open MMVE works without a specific operator, i.e. the
system is operated cooperatively by its participants. There is
no single entity responsible for the system or trusted by all
users. Access to the system is free for all. A typical example
for such an MMVE is a non-commercial online social network.

IV. REQUIREMENTS

In the following section we analyze the requirements that
an authentication service (AS) for P2P-based MMVEs must
fulfill.

1) Decentralized operation: The first requirement for au-
thentication in P2P-based MMVE:s is decentralization. The AS
must allow users to login into the MMVE and to operate within
it without accessing a centralized server. This server could
become a bottleneck for the system performance and a single
point of failure. In addition, someone would have to operate
the server, making this approach unsuitable for open MMVEs.

2) Privacy: With respect to privacy, the authentication must
make sure that other users of the MMVE are not able to derive
knowledge about the identity of other users. Note that an
MMVE developer/operator may decide to make the identity
of its users available to others. This is an MMVE-specific
design decision and does not influence the AS requirements.

3) Availability: Clearly, authentication is a crucial service
for most MMVE. If the AS is not available, no user can log
into the MMVE. This may lead to users getting frustrated with
the MMVE and eventually abandoning it and must therefore
be avoided.

V. RELATED WORK

Security has been widely recognized as a major concern in
MMVEs. However, most researchers concentrate on designing
cheat-proof algorithms, e.g. [2], [3]. All of these approaches
make heavy use of cryptographic functions. They implicitly
assume a public key infrastructure to be present delivering
means to authenticate the a priori unknown communication
partners. For example Rieche et al. [4] explicitly state that
they intend to use an existing server for accounting in their
P2P MMVE infrastructure.

Fully distributed key management infrastructures can be
found in the area of P2P and ad-hoc networks. Threshold
cryptography [5] is a way to realize such a distributed CA.
Out of a group of n nodes, at least k£ are necessary to
authenticate other nodes. It shares some similarities with
our approach basing decisions on trustworthiness of multiple
nodes. However, there is no guarantee that k£ out of the n
nodes are present at a specific time. Furthermore, it is not
clear how to choose n and k£ and how to form subgroups.
Choosing n as all nodes of the network to fully distribute the
CA is unfeasible, due to the huge network size and its dynamic
change at runtime.

Another approach to distribute authentication in an ad-hoc
network is forming a web of trust [6], similar to PGP. Here,
no single trusted authority exists. Instead, everybody can issue
certificates showing that he believes in the identity of someone
else. Thus, trust chains can be built to verify identities. Metrics
like counting trust chains can be used to further strengthen the
belief in one’s identity. However there is no guarantees that a
trust chain exists at all. At the same time, the verification of
a nodes identity is mixed with its ability to authenticate other
nodes. Consequently, misbehaving nodes can hurt the whole
system by issuing lots of false certificates.

Finally, multiple approaches in P2P systems are based on
reputation measuring the trustworthiness of nodes e.g. [7].
Reputation of a node changes according to other nodes’
experiences with that node. This is a distributed voting mech-
anism, and could be used to build up trusted peer-based CAs.
However, it relies on authentication of a node’s identity and
binding its identity to its reputation in the first place.

VI. AUTHENTICATION IN MODERATED MMVESs

After discussing our requirements, we now present our
approach for authentication in MMVEs. We start with our
first variant, which is tailored towards moderated MMVEs.
In Section VII we propose another variant for open MMVEs.

Our first approach is based on three parts: (1) peers signing
their messages, (2) certificates to validate signatures, and (3)
the MMVE operator issuing certificates to users at registration
time.

Before any user is able to access the MMVE, the MMVE
operator sets up a CA that is accessible for all potential users,
e.g. using the WWW. A CA is a trusted system service for
generating certificates. The operator can use any existing CA
software for this. He creates an asymmetric key pair for the
CA, i.e. a public (K g 4) and a private key (K 4). The public
key is then embedded into the MMVE software and distributed
with it. Thus, the CA’s public key is well known to every peer
in the system. When a user wants to register for the MMVE,
he contacts the operator’s CA and registers himself for the
MMVE. During this registration, the user creates an MMVE
identifier (I Dy;) and generates an asymmetric key pair (K l‘;
K;) for it. The identifier can be any arbitrary and sufficiently
long string or number, which cannot be correlated with the
real identity of the user. One way to create it is to hash the
email address of the user with a secure hash function, i.e.
IDy = Hash(user@Qdomain.com). Other users in the P2P
network will only see I Dy and never the real identity of the
user. Hence, with this step the privacy requirement is fulfilled.

operator operator
J]
of loy=g, ||
Som | 0
O 9o|o—=-0
user] g : (] & '
device . G]
P2P network P2P network
@ (b)
Fig. 1. Authentication in a moderated P2P-based MMVE

After the generation of these values the user finishes his
registration by sending a signature request to the CA, i.e.
message (1) in Fig. 1(a):

Messagel : U — CA: {IDU,KJ}K;rA (1)

Clearly, the system operator (i.e. his CA) can choose any
appropriate means to identify the user. If the system operator
needs to guarantee the identity of the user, a valid external cer-
tificate on the email address of the user could be used. When
the user fulfills the registration requirements (e.g. payment was
received) the operator issues a certificate for the new MMVE
identity, i.e. message (2) in Fig. 1(a):

Message2 : CA — U : {IDy, K[J},ts,tv}sign(cA) 2)

where {m}ign(x) = m\{Hash(m)}K; for any message
m. This signed message includes the MMVE identity (I Dy),
the corresponding public key (K {}') and a period of validity
given with the two time marks ¢; and ¢,. Clearly, the CA
could include any additional data in the certificate — e.g. a
serial number — if this is required by the MMVE.

After that, the user can log into the MMVE. To do so, no
additional communication is needed. Instead, the user’s peer

signs all its messages with the user’s private key, i.e. message
(3) in Fig. 1(b):

Message3 : U — peer : {m} gign(u) 3)

Upon receiving such a message, each peer checks if it knows
the sender’s certificate. Otherwise, it requests the certificate
at the sending peer. Once the receiver knows the certificate,
it validates the message signature using the sender’s public
key. If the signature is valid, the peer accepts the message.
Otherwise the message is simply ignored, denying that peer
the participation in the network.

Note that this approach resembles a classical certificate-
based approach very closely. The main differences are that
the MMVE operator is used to provide the CA instead of an
external CA, e.g. VeriSign. In addition, each certificate is also
a ticket, i.e. it allows the owner of the certificate to enter the
network and participate in the MMVE. Our certificates have
a restricted lifetime, similar to most other certification-based
approaches. The duration of the certificate lifetime depends on
the provider’s payment model. If users have to pay to enter
the MMVE, e.g. using a monthly fee, the certificate should be
valid for the paid duration. After that, a new certificate must
be issued. Clearly, this should be transparent for the user, i.e.
the certification renewal must be done automatically.

In certain cases it may be necessary to remove a user from
the MMVE while his certificate is still valid. This may be the
case if the user violates the usage terms or if his account is
stolen. To remove a user, his certificate is revoked. A possible
approach for revocation is to let each peer check with the CA if
the certificate is still valid. However, this would put additional
load on the CA and would require it to be available to perform
the check. Therefore we propose the usage of revocation list
messages, containing the current revocation list. The system
operator creates this list and signs it with his private key. Then
the list is send to the P2P network e.g. via (authenticated)
flooding. Each (non-compromised) peer needs to store the
revocation list locally. To identify updates a simple version
counter could be used. With this kind of revocation list we
just need to ensure, that the list is never lost, i.e. it needs to
be replicated consistently. This is done automatically by our
assumed underlying P2P network (see Section II).

This approach fulfills the requirements given in Section IV.
It is decentralized since peers can authenticate themselves
against other peers at runtime without contacting a centralized
system component. To do so, they only have to sign their
messages. The CA is only needed at registration time to create
a new certificate. If the CA fails, no new users can register
for the MMVE. However, already registered users can keep
logging into the MMVE and use it. As long as two peers are
able to communicate with each other, they can authenticate
against each other. Thus, the approach does also fulfill our
third requirement, availability. Finally, privacy is provided by
using a secure hash function to create the user’s identifier
I Dy . For authentication, only I Dy is send to other peers and
only the MMVE provider can link /Dy to the user’s identity.

VII. AUTHENTICATION IN OPEN MMVEs

Our approach for authentication in moderated MMVEs is
based on the system operator providing a trusted CA to
validate public keys. In an open MMVE, no system opera-
tor exists. Therefore, another approach is needed. An easy
modification is to use an external globally available CA, e.g.
VeriSign, to provide the needed certificates. In the future,
many users may have such a certificate anyway, e.g. for
electronic commerce. However, such CAs usually include the
user’s identity into the certificate. This violates our privacy
requirement. In addition, all users would need a certificate
issued by the external CA, resulting in addition costs.

We omit using a central CA and propose a different ap-
proach to validate public keys. The basic idea is to adapt
the registration process such that instead of a certificate being
created, the public key is stored at a number of different peers
in the P2P network.

(] /]
§i%—a) g2
user \ (] Al ﬂ%\z‘ ‘I

\\ ﬂ /I
device |j]

P2P network " P2P network

() (b)

Fig. 2. Authentication in an open P2P-based MMVE

Similar to the registration in moderated MMVEs, a new user
first has to create an MMVE identifier / D;; and generate an
asymmetric key pair (K Z,“ , K{;). The public key K (J} must be
stored in a way such that (1) it cannot be tampered with and (2)
all other peers can retrieve it when needed. We cannot assume
that any single peer is secure. Therefore, we propose to store
K fj on multiple peers in the P2P network. When we later want
to retrieve the public key, we use a majority voting mechanism
to identify modified entries. We introduce the security level s
to denote the number of manipulated entries that are tolerated
by our approach. To tolerate s such manipulated entries, we
need to store the data on at least (2s + 1) different peers.

An overview of this approach is given in Fig. 2. Initially,
the new peer stores its user’s public key at (2s + 1) different
positions (see (1) in Fig. 2(a)). This registers the user in the
MMVE. After that, the user can log into the MMVE and
operate in it. Whenever his peer has to send a message to
another peer, it signs the message with the user’s private key
(see (2) in Fig. 2(b)). To check the signature, the receiver
contacts the P2P network and retrieves the corresponding
public key from all (2s+ 1) different positions in the network
(see (3) in Fig. 2(b)).

In the following we describe our approach in more detail
and provide some pseudo code for it.

A. Registration

The algorithm for registering a new user is given in Al-
gorithm 1. It must be executed before the user logs into the
MMVE for the first time.

Algorithm 1 Registering in open MMVEs

: IDy = Hash(userQdomain.com);
. (K, K;) = new Key(); // Generate a new key-pair
cfori=1to (2s+1) do
pos; = Hash(IDyli); /I Calculate DHT position
storeObject(pos;,(IDy, Ki}));
end for

Lines 1-2 show the creation of a new MMVE identity
and the generation of a new asymmetric key pair. After
that, the for-loop (see Line 3-6) stores the public key at
(2s+1) different positions in the P2P network. Each individual
position is calculated by hashing the MMVE identity /Dy
concatenated with a unique number (see Line 4). After that,
we store the public key K If and the corresponding I Dy using
the operation storeObject (Line 5).

Note that if the P2P network stores different positions pos;
on the same peer, the security of our approach decreases.
By compromising this peer, an attacker can gain control over
multiple copies of the public key. In our system model, we
assumed the P2P network to distribute positions evenly on the
available peers. Therefore, the probability for such a situation
to occur decreases with the number of peers in the network.

B. Key Retrieval

When a peer sends a signed message to another peer , the
receiver has to check the message signature. To do so, it first
checks if it already knows the sender’s public key. If not, the
receiver executes Algorithm 2.

Algorithm 2 Retrieving a public key

1: // Retrieves the public key for a given ID

items[] = new array[2s + 1];

:fori=1to (2s+1) do
pos; = Hash(IDy|i); // Calculate DHT position
items[i] = retrieveObject(pos;);

end for

item = majority(s,items);

return item. K

R DN A RN

Since we cannot rely on a single peer to provide the valid
public key of a user, we have to collect the public key from
all (2s+ 1) positions and perform a majority voting. With the
for-loop (Line 3-6) we retrieve each copy of the previously
stored public key and store it in the local array items[] (Line
5). In case there are different answers, a simple majority is
used (Line 7), i.e. at least s keys need to be equal in order
to return the public key (Line 8). If no majority of s can be
achieved, we cannot decide which public key is correct. In this
case, the received message is discarded.

C. Key Updates

In certain cases, a user might want to update his public
key, e.g. because he suspects that it might be compromised. In
addition, the MM VE might use relatively short keys to achieve
higher encryption efficiency. In this case, the keys should be
exchanged regularly. Finally, if the user decides that he will
not use the MMVE anymore, he should be able to remove his
registration from the P2P network. To update a registered key,
Algorithm 3 can be used.

Algorithm 3 Updating a public key item

1: // Received a message m = {I Dy, K[’jr}signw)

2. /I K, {j’: new (updated) public key

3: // To be stored at position pos

4: /I Note: {m}gign(x) = m|{Hash(m)}K)_(

5: /I Note: m.sig(X) = {Hash(m)}K)_<

6: if localStore[pos] != null) then

7 kpub = locaIStore[pos].K;};

8 if (Hash(IDy,K}") == {m.sig(U)}rpus) then

o if K != null then

10: localStore[pos] = (IDy, K;);
11: else

12: localStore[pos] = null;

13: end if

14: end if

15: end if

When the user wants to update his public key, he prepares
an update message and sends it to all peers holding a copy
of his public key. These peers are determined similarly to the
original registration (see Algorithm 1). An update message
contains the user’s MMVE identifier / Dy; and the new public
key K a' It is signed using the old public key. Upon receiving
an update message, each peer first checks if it has an entry at
the specified position (Line 6). If this is the case, the stored
public key is used to validate the signature of the message
(Line 8). If the signature is valid, the peer updates the entry
(Line 10). Otherwise, the update is denied. To allow deleting
entries, the peer checks if the provided new key equals null
(Line 9). In that case, instead of updating the key, the peer
removes the entry from its local storage (Line 12).

Note that while this algorithm is executed, peers trying to
retrieve the public key may not be able to constitute a valid
quorum, if some copies are compromised. This is resolved
once the algorithm terminates for all copies.

D. Discussion

Our approach for authentication in open MMVEs fulfills
all three requirements. It is completely decentralized, both at
registration time and during the MMVE execution. Similar to
our approach for moderated MMVEs, privacy is provided by
using only hashed user identities. Hence, the identity of other
users is kept hidden. Since the public key is stored in the
P2P network, it is always accessible. Thus, the AS is always
available, fulfilling our third and last requirement.

For our approach to work, a peer must be connected to
at least (2s + 1) other peers in the P2P network. Otherwise,
during the first connection of a new user, the neighboring peers
could cheat about its identity, i.e. mount a so called man-in-
the-middle attack. One way to guarantee this, is to organize
the P2P network such that it forms a (2s+1)-connected graph.
In such a graph, there are always (2s+ 1) paths between each
peer, making attacks impossible if less than (s + 1) peers are
compromised. We already applied this approach successfully
in wireless sensor networks [8] and are planning to transfer
these results to MMVEs.

VIII. CONCLUSION AND FUTURE WORK

In this paper we proposed an AS for P2P-based MMVE:s.
We provided two variants. The first is tailored towards moder-
ated MMVEs. It relies on the MMVE operator offering a CA to
issue certificates to users of the MMVE. At runtime, messages
are signed with the users’ public keys and validated using their
certificates. This approach is relatively straight forward and
can be applied with little effort. However, it is not applicable
to open MMVEs, since they do not have an operator. Our
second variant is able to operate without an operator. Instead
of a CA issuing certificates, public keys are stored redundantly
in the P2P network and checked using quorums. This approach
is able to tolerate up to s compromised copies of the stored
public key. If an attacker is able to gain control over more
copies, he can modify the public key and impersonate another
user. Therefore, the MMVE must use a sufficiently high
security level s.

Clearly, the usage of asymmetric cryptography on each
message is very resource intensive. The straight forward
improvement is to establish a symmetric session key at the
beginning of the communication. This key can then be used
for creating message authentication codes for each message.
With the same method also confidentiality can be achieved.

At the moment we are developing a prototypical implemen-
tation of our approach for moderated MMVESs. Our approach
for open MMVEs is still work in progress and must be refined
and analyzed in more detail with respect to different possible
attacks. As an example, until now we assumed that the P2P
network is able to relocate data items securely between peers,
when the responsibility for a given logical position in the
network changes. We plan to analyze this assumption and
investigate adequate mechanisms to achieve it.

REFERENCES

[1] G. Schiele, R. Sueselbeck, A. Wacker, J. Haehner, C. Becker, and T. Weis,
“Requirements of peer-to-peer-based massively multiplayer online gam-
ing,” in Proceedings of the Seventh International Workshop on Global
and Peer-to-Peer Computing, 2007.

[2] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low latency and
cheat-proof event ordering for peer-to-peer games,” in NOSSDAV ’04:
Proceedings of the 14th international workshop on Network and operating
systems support for digital audio and video. New York, NY, USA: ACM,
2004, pp. 134-139.

[3] A. B. Corman, S. Douglas, P. Schachte, and V. Teague, “A secure
event agreement (SEA) protocol for peer-to-peer games,” in The First
International Conference on Availability, Reliability and Security (ARES).
IEEE Computer Society, 2006, pp. 34—41.

[4]

(51

(6]

S. Rieche, K. Wehrle, M. Fouquet, H. Niedermayer, L. Petrak, and
G. Carle, “Peer-to-peer-based infrastructure support for massively mul-
tiplayer online games,” in 4th Annual IEEE Consumer Communications
and Networking Conference (CCNC 2007), Las Vegas, Jan. 2007.

Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” in CRYPTO ’89:
Proceedings of the 9th Annual International Cryptology Conference on
Advances in Cryptology. London, UK: Springer-Verlag, 1990, pp. 307—
315.

J.-P. Hubaux, L. Buttyn, and S. Capkun, “The quest for security in mobile
ad hoc networks,” in Proceeding of the ACM Symposium on Mobile Ad
Hoc Networking and Computing (MobiHOC), 2001.

(71

(8]

A. Singh and L. Liu, “Trustme: Anonymous management of trust re-
lationships in decentralized P2P systems,” in Peer-to-Peer Computing,
N. Shahmehri, R. L. Graham, and G. Caronni, Eds. IEEE Computer
Society, 2003, pp. 142-149.

A. Wacker, T. Heiber, and H. Cermann, “A key-distribution scheme for
wireless home automation networks,” in Proceedings of IEEE CCNC
2004, TEEE Communications Society. Las Vegas, Nevada, USA: IEEE,
January, 5-8 2004.

