
Data Aggregation Method for View Range
Computation on P2P-based VCS

Ryo Nishide, Dai Ito, Masaaki Ohnishi, Shinichi Ueshima
Graduate School of Informatics, Kansai University
2-1-1 Ryozenji, Takatsuki, Osaka, 569-1095, Japan

Email: {fa4d003, fb6m124, fa4d001, ueshima}@edu.kansai-u.ac.jp

Abstract—Efficient data transfer is an essential topic to achieve
scalability and data consistency to maintain the system in P2P-
based Virtual Collaborative Space (VCS). In this VCS, each
terminal requires the surrounding spatial data of its avatars
for visualization of space. The congestion of avatars is then
a serious problem when each terminal collects spatial data
from the surrounding avatars. Thus, it requires a method to
transfer data without delay and to relieve the load for terminals
and networks. This paper proposes a data aggregation method
on a P2P-based scalable geographic network to transfer the
data efficiently at a congested area of avatars as nodes on a
geographic network. The authors apply Skip Delaunay Network
(SDN) generated from a hybrid structure of logical SkipNet and
geographical Delaunay Network for remote access, and perform
geocast for sending messages to a particular point or range on
a plane. The authors conceive that multiple data paths to a
common destination node construct a tree structure, in which
the destination node is the root node, and nodes along the way
are the internal nodes of the tree. Using the internal nodes for
data aggregation, the proposed method can reduce frequent data
transfer at a geographically crowded area of nodes. The authors
show that data aggregation method on SDN can achieve both
the long range contacts and reduction of CPU and network loads
regardless of node distribution. The efficiency has been evaluated
from the context of node congestion by examining the number
of transferred data for methods with and without aggregation.

I. I NTRODUCTION

Virtual Collaborative Space System (VCS System), a system
which uses the location and performs interaction on virtual
space is gaining focus recently [1], [2]. It is a system with
a set of interacting entities as avatars in virtual space. Users
control these avatars from their terminals to walk-through in
space, and perform interactions by sending messages to other
users in virtual space.

Most of these VCS systems are built in C/S model [3], [4],
which lacks scalability such as excessive cost for servers due to
the increase of users. To overcome this problem, some efforts
have been recently made for generating VCS systems on P2P
setting [5–8], focusing on the characteristics as follows:

• Network scalability with respect to number of users
• System scalability according to spatial extension
• Distributive data management by space partitioning, and

allotment of partitioned space to nodes

VCS systems have the same characteristic that each user
requires only the local data of the surroundings. Thus, it is
necessary to aggregate the surrounding data, and disseminate
the data to a particular location or range on space. It is

also necessary to cope with network congestion on P2P
environment, by reducing inefficient data transfer for multihop
communication.

We employ a well-known Delaunay diagram in computa-
tional geometry based on the adjacency of locations of avatars
as nodes. We have proposed an autonomous and distributive
generation algorithm of P2P Delaunay Network, which nodes
generate such overlaid network cooperatively over 2D plane
in P2P settings [9]. We have also proposed a Skip Delaunay
Network (SDN) for reducing the number of hops for data
transfer to remote nodes, using the hybrid structure of logical
Skipnet and a geographical Delaunay network, and shown
method to perform geocast to determine the directions to send
data on geographical network [10].

If nodes within the view range increase, such problems
as following become crucial in terms of network scalability,
which requires a scheme to transfer data efficiently.

• Data Transfer Delay: Increase of number of hops
• Network Congestion: Data packet concentration to a

specific peer
Furthermore, even though SDN can reduce the delay for data
transfer, it cannot perform network load balancing for data
packet concentration at a crowded area of nodes.

In this paper, we show data aggregation tree on SDN, which
uses the scheme to temporarily cache multiple data and send
them to the successor node at once. The paths for multiple data
sent to the same destination node generate a tree structure, in
which the root node is the destination, and each internal node
of the tree is a node to cache multiple data and send them at
once.

Using this scheme, we can reduce the frequency of data
transfers between nodes, and cope with hotspots of nodes
receiving data packets frequently. Our method employs advan-
tageous features from both the SDN and aggregation method,
by reducing the data transfer delay with SDN and handling
network congestion with aggregation tree.

II. FEATURES OFPROPOSEDMETHOD

A. Generation of View

GUI Construction:In Virtual Collaborative Space, user’s
terminal requires the surrounding spatial data of its avatar
to generate a view range for visualization of space. Thus, to
construct a GUI, each user’s terminal requires the spatial data
managed by other users.



Fig. 1. a0’s Data Dissemination and Aggregation for Constructing a View

To gather data from terminals of the surrounding avatars, it
is necessary for other terminals to send their(location, state)
data. On the other hand, it is also required to receive these
data from the terminals of nearby avatars. Our model enables
each terminal to generate a view with a certain ranger by
disseminating and aggregating these data to terminals of its
surrounding avatars autonomously and distributively. Here, we
assume the size and shape of view range is equal for every
user’s terminal.

A particular user’s terminal which is controlling avatarai

generates the view rangeR(ai), and sends data to every
terminal which has avatar withinR(ai). The number of
terminals to send data depends on the density of avatars within
the view range. Note that two particular avatarsai, aj mutually
within their own view range require data of each other.

Fig. 1 shows an example for generating a view of avatar
a0. It shows thata0 requires data ofa1 within the view
rangeR(a0). On the other hand,a1 requiresa0’s data in the
same way. Assuming that radiusr of view range is the same
with every avatar,a0’s terminal disseminates its data to its
surrounding avatar’s terminals, and aggregates other terminals’
data within the view rangeR(a0) including a1’s data. In this
way, the necessary spatial data are sent to all terminals with
avatar in the view range.

Delaunay Network:Delaunay Network provides locality
connections only with its adjacent neighbors, which can
efficiently gather the surrounding spatial data required for
generating a view. We use the locations of avatars controlled
by users’ terminals as nodes’ location on Delaunay Network.
Moreover, by assigning Voronoi Regions as the managing
territories of space to the entire nodes, the entire data within
the view range can be queried as the Voronoi regions of entire
nodes cover the entire plane.

B. SDN as a Scalable Network

Geocasting within View Range on SDN
Delaunay Network requires a mechanism to access to re-

mote nodes in case when node congestions occurred within the
view range. Else, it can cause data transfer delay depending on
the number of nodes within the view range. Thus, connections
with remote nodes are necessary to send data within the
congested area of nodes.

We use SDN, which is a hybrid structure of SkipNet and
geographical Delaunay Network on a plane [10], for gener-

(a) n0: Geocast inR(n0) (b) n8: Geocast inR8

Fig. 2. Geometric Routing to Nodes within View Range on SDN

ating connections with remote nodes. Moreover, we perform
geocast on SDN to send data to every node within the view
range. Using SDN, we can build long range contacts (LRC)
to send data to remote nodes, to deal with data transfer delay.

To perform geocast, each node generates Voronoi Diagram
virtually with all of the neighbor nodes throughout the entire
level of SDN. Using this Virtual Voronoi Diagram, we can
determine the neighbor nodes to send data by extracting the
intersection areaAi of query range and neighbor nodes’
Virtual Voronoi Region. We send the data to every node, whose
Virtual Voronoi Region intersects with the query range.

When data are sent to all neighbor nodes within view
range, some nodes might receive the same data from multiple
neighbor nodes. To avoid this, we set the direction to send
data by replacing the query range with intersection areaAi,
and send data with query rangeAi to neighbor nodes. Thus,
we can send data to a specific direction, and each query range
data will be received only once.

We use the following notations to describe our method:

• NN : neighbor node set of the entire level of SDN

• V.V or(ni): Virtual Voronoi Region ofni

• q(ni): query range ofni

Using these notations, we derive the following formula to
determine the neighbor nodesNNsend(ni) to send data.

NNsend(ni) = {nj ∈ NN |V.V or(nj) ∩ q(ni) ̸= ϕ} (1)

Instead of sending the view range to neighbor nodenj , we
only send the intersection areaq(nj) = {V.V or(nj)∩ q(ni)}
to nodenj . Note that this intersection area is used to set the
direction to send data.

Here, we describe the method to perform geocast on SDN,
to assure thatn0’s data can be reached to every node within
a certain view ranger, using Fig. 2. Initially,n0 generates
V.V or with neighbor nodes of every level of SDN (blue dots
on Fig. 2 left). In the figure,n1, n2, n3, n4, n6, n8, n10,
n13, n16 are the neighbors ofn0. Among these neighbors,n0

sends data to neighborsni with intersectingV.V or(ni) and
view rangeR(n0), which refers to all the neighbors ofn0

exceptn13 and n16. The data includes the intersection area
dataRi on the figure.

Then, nodeni which has receivedRi data verifies their
intersections with their neighbor’sV.V or and Ri, and sends



Fig. 3. Node Congestions and Number of Neighbors (Color = Level)

intersection data to its neighbors in the same way. Fig. 2 right
showsn8, which has receivedR8 data fromn0, sends the
intersection data of neighbor’sV.V or and R8 to neighbor
nodesn7 andn9, respectively. Using this routing scheme, the
data can be delivered to the entire nodes within the circular
range with radiusr.

This method for disseminating data within view range has
the following characteristics:

• Data can be sent to every node with an intersection of its
Voronoi region and view range

• Data can reach the destination node(s) regardless of the
location and shape of view range

Congested Nodes on SDN
In the previous section, we have shown that we can expect

an efficient routing scheme for disseminating data to remote
nodes by using SDN. We believe that this scheme can provide
efficient routing for nodes within the view range. In this
section, we describe how to solve the remaining problems for
SDN when data concentrate to nodes in the crowded area.

In SDN, the network load can be balanced if nodes have
equal size ranges and are uniformly distributed on a plane.
However, when nodes are skewed at a particular location on
space, the network load can be congested at the skewed loca-
tion of nodes on space. Specifically, SDN has a characteristic
that a particular node possesses many connections if a large
number of nodes are within the view range, which increases
the risk for data packets to be received from multiple nodes
frequently (Fig. 3). Therefore, to deal with such problems, it
is necessary to consider an efficient data transfer scheme to
avoid network congestion.

When sending data packets, it is obvious that they should
be sent with long messages up to the limit of window size,
instead of sending numerous short message packets frequently.
Otherwise, frequent transfers of short message packets can
waste the bandwidth, as several packets may get lost due to
buffer overflow, which requires the packets to be sent again.
Resultantly, this increases the risk for massive packets to flow
in the network, which causes network congestion.

Thus, in order to avoid such situations, we consider a model
to cache multiple received data and send to the following

Fig. 4. Aggregation Tree Model for Data Transfer

neighbor nodes at once. In this way, we can save bandwidth
by reducing frequent transfer of data packets, and reduce the
number of data packets in the entire network.

C. Data Aggregation Method

In the previous section, we have shown method for nodes to
send data using geocast, and explained that skewed distribution
of nodes can cause network congestion when performing
geocast on SDN. Here, we provide solution to reduce network
load and frequent data transfer, using data aggregation tree to
transfer data efficiently.

Data aggregation tree is a tree structure built from the paths
of multiple data sent to a common destination node. This
tree is generated passively from the paths of data sent by
geocasting. The node which constructs the view range is the
root node of the tree, and each node generates its unique data
aggregation tree. Data are sent to its parent node of the tree
recursively, until the data reach the destination node.

When data are sent to their parent node, multiple data can
intersect at a particular internal node of the tree. From this
internal node, the data take the common path to the destination
node. We consider that instead of sending the data individually,
multiple data should be cached and sent together as a single
data to the successor node.

Here, we provide an example of data aggregation tree of
noden0 (Fig. 4). Letni, nj be source nodes to send datadi,
dj to destination noden0 respectively. The paths fordi, dj

have either of the following characteristics:

• di anddj intersect at a particular nodenk, and takes the
same path ton0

• di anddj intersect atn0

In this tree,n0 is the root node and intersecting nodenk is the
internal node. To reduce frequent data transfer,di anddj are
packaged as a single data atnk and sent ton0 accordingly.

We believe that data aggregation tree can considerably
reduce the data transfer frequency for these nodes. Moreover,
the total data transfer frequency can stay low throughout the
entire nodes.



Fig. 5. Data Structure of our Method

III. PROPOSEDMETHOD AND ITS DATA STRUCTURES

Here, we describe the proposed method for generating an
aggregation tree. Figure 5 shows the data structure of our
method and roles for each list. Initially, each node has three
lists, namely Receive List (Rec List), Neighbor Node List (NN
List), and Computation List (Comp List).

The queries include [Node ID, Packet ID, Location, Query
Range, Time]. All the queries received from other nodes are
stored in Rec List.

The details of the processes in Fig. 5 are as follows:

1) When Comp List is empty, move all the queries from
Rec List to Comp List, and clear Rec List

2) Extract each neighbor nodeni from NN List
3) Obtain the intersection area with each query range in

Comp List andV.V or(ni). Generate Send List(ni) and
store intersection area for each query

4) When every query in Comp List is processed, send Send
List(ni) to nodeni

5) Perform step 2) with next neighbor in NN List. Clear
the Comp List when every node in NN List is processed

Get Queries from Rec List
In order to determine the next destination node to send

range query, we obtain the intersection area of query range
andV.V or of neighbor nodes. We do not use queries in Rec
List to obtain the intersection area, as this process should not
be interfered by the process of adding queries in Rec List. That
is, each node in NN List in turns obtains an intersection area
with each query in Comp List, hence the new added query
might not be processed by some neighbor nodes, which have
already completed their intersection area computation.

Therefore, we use Rec List to store queries received from
other nodes, and Comp List to get queries from Rec List.
In detail, the Comp List pulls out a set of queries from Rec
List and stores in Comp List, when the Comp List is empty.
Moreover, the Comp List clears the list every time when the
processes have been completed throughout all neighbor nodes.

Selecting Neighbor Nodes to Send Queries
Here, we describe the process to choose the neighbor node

to send the queries in Comp List. To choose the neighbor node,
the following information is required.

Fig. 6. Data Aggregation and Transfer Method

• V.V or of every neighbor node (in NN List)
• Query range from predecessor node (in Comp List)

To choose the destination node, we obtain the intersecting
area of query range andV.V or for every neighbor node in
NN List. Every neighbor node with an intersection area will
be the target node to send the query. Instead of sending the
view range as query range, we send the intersection area as
query range to successor neighbor nodes.

Figure 6 (a) illustratesq1 andq2’s query ranges intersecting
with {V.V or(n3), V.V or(n4), V.V or(n5)}. Thus, the next
destination nodes forq1 and q2 will be n3, n4, and n5.
Consequently, the next destination nodes (ni) will be sent with
the intersection area ofV.V or(ni) andq1, q2 respectively.

Send List for Packaging and Sending Queries
When sending packets to a particular neighbor node, it

is inefficient to send range query packets one after another.
Therefore, we generate a Send List to store every query with
an intersection area of neighbor node, and send the queries
together to the neighbor node.

The Send List is generated separately for each neighbor
node, and each query in Comp List is classified to the Send
List of relevant neighbor nodes. To send queries in Send List
together, we generate a package with all queries in Send List,
and send it to the neighbor node. In this way, we can send
multiple queries together to neighbor nodes, avoiding frequent
data transfer.

Figure 6 (b) shows an example for generating Send List
of n3, and utilizing it for packaging multiple queries to send
to neighbor noden3. Multiple queriesq1, q2, q3, ..., qi are
stored in Comp List. The Send List forn3 storesq1 andq2 as
these two queries are to be sent ton3. Finally, q1 and q2 are
packaged and sent ton3.

IV. EVALUATION

In this section, we verify the efficiency of our data aggre-
gation method from the effects on node congestion within the
view range. We have obtained the number of received queries
according to the increase of nodes within the view range.



Fig. 7. Node Density and Number of Received Data

In our method, each node has a view range, and multicasts
data within the view range. We fix the shape and size of
view range for every node, and examine how the node density
affects the CPU load for method with/without aggregation.
Settings for Simulation

Under the following settings, we have obtained the number
of received data for with/without the data aggregation on SDN.

• View range: Nodes have circular view range
• Node density: Nodes increase within the view range
• Data transfer: Nodes send each data per step
• Aggregation: Package data and send to neighbor nodes
• No aggregation: Just cast data to neighbor nodes

CPU Load w.r.t. Node Congestion
We compare the method with/without aggregation in terms

of congestion of nodes within the view range. In fig. 7, we
examine the number of received data w.r.t. the number of
nodes within the view range.

The figure shows that number of received data without the
aggregation method rises steeply according to nodes increase.
From the result, we consider that few increase of nodes
can extremely increase the number of received data, as the
data sent from a single node can be received from multiple
neighbor nodes. On the other hand, the number of received
data for aggregation method rises slightly, as multiple data
are packed together and sent to the successor nodes. Therefore,
the number of received data for aggregation method stays low
even in node congestion.

We have performed step-by-step data transfer in this simu-
lation. If we apply our method in real environment, we need to
consider the CPU performance and data transfer speed. Thus,
it is important to determine an appropriate interval time length
for aggregating data, while considering the required threshold
of time length for visualization and interaction in space.

V. RELATED WORKS

To obtain scalability in respect to number of users, a
method to transfer spatial data efficiently is an important issue.
Efficient routing mechanism and a scheme to reduce frequent
data transfer are some required issues for achieving scalability.

For an efficient routing mechanism, some works on geo-
cast have been proposed. [12] proposes a geocast routing
mechanism based on node’s location to send messages to

nodes within a specified geographical area on mobile ad-hoc
networks. [10] proposes method to construct a probabilistic
link structure with remote nodes on P2P Delaunay Network,
and applies geocast routing mechanism for sending messages
to a specific geographical point or range on space.

For reduction of data transfer frequency, a method has also
been proposed to construct a tree for aggregating and sending
multiple data to its connected node. [13] proposes directed
diffusion scheme for data dissemination, to intentionally ag-
gregate multiple data at internal nodes of the tree. On the
contrary, our method generates an aggregation tree passively
from the path of multiple data sent using geocast.

In our proposed method, we can achieve efficient data
transfer from both advantages of an efficient geocast routing
mechanism and data aggregation method.

VI. CONCLUSION

We have proposed method to utilize Data Aggregation Tree
for efficient data transfer, and examined that our method
works efficiently on SDN through numerical simulation. Fur-
thermore, with Data Aggregation Tree and geometric routing
on SDN, we can perform geocast efficiently while avoiding
network congestion.

For our plans in future works, additional evaluations are
required with/without aggregation method, such as verifying
the CPU and network load, acquiring the appropriate interval
time lengths for aggregating data, and examining the amount
of data loss due to transfer frequency of packets.

REFERENCES

[1] B. Damer, “Meeting in the ether,” ACM interactions, Vol.14 No.5, pp.16–
18, 2007.

[2] M. Macedonia, “Generation 3D: Living in Virtual Worlds,” IEEE Com-
puter, Vol.40 No.10, pp. 99–101, 2007.

[3] Second Life, http://secondlife.com/
[4] Active Worlds, http://www.activeworlds.com/
[5] S.-Y. Hu, J.-F. Chen and T.-H. Chen, “VON: A scalable peer-to-peer

network for virtual environments,” IEEE Network, Vol.20 No.4, pp.22–
31, 2006.

[6] B. Knutsson, H. Lu, W. Xu, B. Hopkins, “Peer-to-Peer Support for
Massively Multiplayer Games,” In Joint Conf. IEEE Computer and
Communications Societies, Vol.1, pp.107, 2004.

[7] Y. Kawahara, H. Morikawa, T. Aoyama, “A Peer-to-Peer Message Ex-
change Scheme for Large Scale Networked Virtual Environments,” IEEE
ICCS, pp. 957-961, 2002.

[8] P. Morillo, J.M. Ordũna, M. Ferńandez, J. Duato, “Improving the Per-
formance of Distributed Virtual Environment Systems,” IEEE Trans. on
Parallel and Distributed Systems, Vol.16 No.7, pp. 637-649, 2005.

[9] M. Ohnishi, R. Nishide, S. Ueshima, “Incremental construction of delau-
nay overlaid network for virtual collaborative space,” 3-rd Proc. Conf.
on Creating, Connecting and Collaborating through Computing (C5’05),
(IEEE CS Press), pp.77–84, 2005.

[10] S. Tsuboi, T. Oku, M. Ohnishi, S. Ueshima, “Generating Skip Delaunay
Network for P2P Geocasting,” 3-rd Proc. Conf. on Creating, Connecting
and Collaborating through Computing (C5’08), (IEEE CS Press), 2008.

[11] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, A. Wolman, “SkipNet:
A Scalable Overlay Network with Practical Locality Properties”, 4th
USENIX Symp. on Internet Technologies and Systems (USITS ’03),
Vol.4, p.9, 2003.

[12] Y. B. Ko, N. H. Vaidya, “Flooding-based geocasting protocols for
mobile ad hoc networks”, Mobile Networks and Applications, Vol.7 No.6,
pp.471–480, 2002.

[13] C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heidemann, “Impact of
network density on data aggregation in wireless sensor networks”, 22nd
Int’l IEEE Conf on Distributed Computing Systems, pp.457–458, 2002.


