
The HyperVerse - Concepts for a Federated and
Torrent-Based “3D Web”

Jean Botev, Alexander Höhfeld,
Hermann Schloss, Ingo Scholtes

Systemsoftware and Distributed Systems
Computer Science Department

University of Trier
Email: {botev, hoehfeld, schloss, scholtes}@syssoft.uni-trier.de

Markus Esch
Faculté des Sciences, de la Technologie

et de la Communication
University of Luxemburg

Email: markus.esch@uni.lu

Abstract— The vision of a “3D Web” as a combination of
massive online virtual environments and today’s WWW currently
attracts a lot of attention. While it provides a multitude of
opportunities, the realization of this vision on a global scale poses
severe technical challenges. This work-in-progress paper intends
to point out some of the major challenges and highlights key
concepts of an infrastructure that is being developed in order to
meet them. Among these concepts, special emphasis is put on the
usage of a two-tier Peer-to-Peer approach, the implementation of
Torrent-based data distribution and the development of a graded
consistency notion. The paper also briefly presents the current
state of a prototype implementation that is being developed
in order to validate these concepts and evaluate alternative
approaches.

I. INTRODUCTION

Although various forms of distributed virtual environments
currently attract a lot of attention, most of today’s represen-
tatives are proprietary worlds that are hosted in a centralized
fashion. When considering the vision of something one might
call the “3D Web”, in section II we find that - in contrast to
today’s precursors - decentralized approaches are required in
order to provide a distributed persistent virtual environment
on a global scale. With the HyperVerse project we intend to
investigate technologies that are appropriate to realize such a
scenario.

A global scale “3D Web” offers a variety of obvious
interesting opportunities, like immersive mass events and the
facilitation of real-time interaction between users based on
advances in human interface technologies. Another interesting
scenario arises from the observation that mobile devices are
becoming increasingly location-aware and network-capable
while at the same time getting smaller and cheaper. Thus it
seems reasonable that in the future more and more everyday
objects will feature such capabilities as well as all kinds
of sensor technology. Combining these developments with a
“3D Web” would allow more and more real-world objects to
possess a real-time virtual representation, giving users intuitive
means to remotely access various kinds of information on
their state. In this respect, the current surge of geo-referenced
information accessible via virtual globes like “Google Earth”1

1http://earth.google.com

or “Virtual Earth”2 is a first glimpse of what is yet to come. In
the course of this paper, a persistent virtual environment which
provides these opportunities at a global scale will henceforth
be called “HyperVerse”.

While its opportunities sound alluring, it is obvious that the
realization of a HyperVerse scenario poses severe technical
challenges. In the context of this paper, we restrict ourselves
to briefly mentioning some of the - according to our opinion
- most important questions:

• How can scalability suitable for the provision of a global
scale HyperVerse scenario be achieved?

• How can such a scalability be combined with interactiv-
ity, consistency and persistency?

• How can client resources be utilized in a way that
unburdens core network resources?

• Which cross-layer aspects can be identified that are
induced by HyperVerse-specific communication patterns?

• How can the client-side fan-in problem in densely popu-
lated regions be resolved?

The HyperVerse project aims at the creation of a federated
infrastructure meeting these requirements. In section II we
will present some of the key concepts the project relies on.
Section III will give a brief description of the current state of
a prototype implementation that is being developed in order
to evaluate these concepts.

II. CONCEPTS OF A FEDERATED HYPERVERSE
INFRASTRUCTURE

In order to retain the decentralized nature, scalability, in-
dependence and reliability of the WWW and the Internet in
general, for the provision of a HyperVerse scenario it is not
eligible to rely on centralized server farms that are controlled
by a single instance. Thus we embrace Peer-to-Peer (P2P)
technologies in order to support the targeted global scale.
For a multitude of reasons we do not aim at a pure P2P
approach but rather use a two-tier architecture consisting of a
highly structured federated backbone and a loosely structured
P2P client overlay. The main reason for this is the expected
churn rates in the HyperVerse scenario. Since we envision

2http://www.microsoft.com/virtualearth



a lightweight client software that is used in a way that is
similar to today’s Web browsers, clients will most likely
exhibit exceedingly high churn rates as well as heterogeneous
capabilities. Accordingly the P2P topology used for clients
needs to be highly churn resilient in the face of global-
scale user numbers. At the same time HyperVerse scenarios
require massive amounts of persistent data to be reliably and
efficiently accessible. Unlike in today’s Massive Multiplayer
Online Games (MMOGs), this data is required to be totally
dynamic and cannot be predistributed with clients. We tackle
this problem by using a massive amount of public servers
that are supposed to be comparably reliable and host data in
a federated manner. Public servers resembling today’s Web
Servers, we do not require them to be under control of
any centralized authority. For their provision we rely on the
incentive of being able to publish information.

In accordance with [11], by explicitly distinguishing be-
tween these two classes of peer participants we exploit their
different properties in order to provide better reliability, avail-
ability and scalability of the whole system. The comparative
low churn rate of public servers can be utilized by using
highly structured P2P overlay networks. This provides for an
efficient and reliable data retrieval. For clients, less structured
topologies seem to be appropriate (see figure 1). The BitTor-
rent protocol [5] has proven to be valuable for the scalable
distribution of huge files and is extremely resilient against
churn [2]. In particular this resilience does not depend on
the number of peers. The following section will provide more
details on the application of similar approaches to distributed
virtual environments.

Loosely 
Structured 
Peer Overlay

Highly Structured 
Public Server Overlay

Fig. 1. Two Tier HyperVerse Infrastructure

A. Torrent Based Data Distribution

In order to be able to describe the Torrent-based distribution
of information, we give a short description of the dynamic
space-based interest management model implemented in the
current HyperVerse prototype in so far as it affects concepts
described in the following paragraphs. For the same reason,
we also give a short description of the caching scheme
that has been implemented in order to exploit data locality
inherent to virtual worlds. Throughout the paper we refer to
the terms object and terrain data as mesh, texture and meta
information that are associated with dynamic 3D objects as
well as comparably static world terrain.

a) Interest Management: Given an avatar’s 3D position
p in the virtual world, we differentiate between its Field of
View (FoV) and Area of Interest (AoI). Assuming a maximum
view distance d, an avatar’s FoV is described by a sphere
with radius d around p. The AoI is another sphere with radius
d + ∆ (∆ ≥ 0) around p. Initially all objects and terrain
data within the AoI sphere around p are retrieved. In order to
mitigate the effects of retrieval latency, we use another sphere
with radius d + Λ (Λ < ∆) around p. The user can move
within a distance Λ around p (see e.g. position p′ in figure 2)
without requiring further object retrieval. Whenever the avatar
has moved more than Λ away from the position p, around
which the AoI has been retrieved (see e.g. position p′′ in figure
2) - a new AoI centered around the current position will be
set. At this point, information on all objects and terrain within
the new AoI need to be retrieved, more precisely only on
those that haven’t been in the AoI before. The introduction of
the threshold Λ allows for more time for requesting these data
since the users FoV is still ∆−Λ away from regions for which
no information has been prefetched. Accordingly, the choice
of the parameters Λ and ∆ influences retrieval frequency, the
amount of data present within the AoI as well as the retrieval
latency that can be tolerated without having visual effects.
Both parameters can be chosen by clients according to their
individual capabilities.

∆

p

p´´

p´
d

Λ

Fig. 2. A 2D projection of Area of Interest (AoI) and Field of View (FoV)

b) Data Locality in Virtual Environments: Looking at
the pattern of access to object and terrain data induced by
a supposed primary continuous movement through virtual
worlds, one recognizes both temporal and spatial locality of
reference with respect to the world’s geography. Due to the
avatar’s movement, there is a higher probability for objects
near the avatar’s FoV to be accessed in the future - a fact
that is allowed for by prefetching data from within the AoI
as described above. One aspect of temporal locality in virtual
worlds refers to the fact that recently accessed objects remain
in the users FoV for some time and therefore will be accessed
repeatedly. Another aspect is caused by frequent visits to the
user’s favorite venues. A certain user exhibits e.g. a higher
probability of frequently accessing information residing in
distinct areas within the virtual world. Even in today’s WWW



one recognizes that most users repeatedly check an individual
working set of favorite information resources, be it subscribed
feeds, news portals, Blogs or community Websites. In today’s
WWW, in order to save redundant transmission, these locality
aspects are allowed for by caches at various stages like user
agent caches or caching proxy agents. In distributed virtual en-
vironments, data locality can be exploited by applying caching
techniques as well. The rendering process involved in clients
implicitly requires objects and terrain data to be cached locally
at least as long as these data concern objects in the user’s FoV.
While such a cache can be based on a simple LRU strategy,
the further exploitation of locality and optimization of the
cache hit rate requires more advanced concepts. The current
prototype HyperVerse browser (being described in section III)
uses a multi-tier caching strategy in which object information
within the FoV are held in graphics memory. This is backed up
by a fixed-size in-memory cache that uses a combined LRU,
geographical distance and object size metric as a replacement
heuristic. It is especially important to consider the in-memory
size of cached objects since it might involve huge variations
and discarding big objects bears a greater potential for wasting
network resources: Wrongly ejecting e.g. a few Kilobyte-
sized object is doubtlessly less troublesome than spuriously
discarding one being several Megabytes in size. The in-
memory cache is backed up by a permanent storage cache file
with configurable size. The maximum size of this cache can
most likely be amply chosen in order to optimize performance
and unburden network resources.

Caching is complicated by the fact that objects must be
allowed to dynamically change at any time. This may occur
following a user interaction with an object or abruptly in a
scenario of augmented virtual real-world object representations
that actively push state updates triggered e.g. by sensors. Due
to the usage of caching, at a given time several copies of data
may reside in the caches of different HyperVerse browsers. In
order to keep these cached data coherent, a Publish/Subscribe
paradigm maintaining subscriptions to objects residing in a
client’s cache is used. Dynamic and asynchronous changes of
objects are actively pushed to subscribers in order to maintain
cache coherency. Depending on the cache-tier, different update
strategies are used. Updates of objects that reside in graphics
or system memory (i.e. especially those in the FoV) are
pushed to subscribers instantly. For objects residing in the
disk storage cache file, the first update of an object sets
a dirty-bit and the subscription is canceled. Dirty-marked
objects are actively refreshed by clients as soon as they enter
the AoI, preventing needless communication on objects that
cannot instantaneously enter the FoV. Rather than requiring
information sources to send unicast messages to all subscribers
or relying on multicast facilities of lower protocol layers, the
Torrent-like scheme that will be described in the next section
can be used for a scalable dissemination of update messages.

c) Application of Torrent Principles: The number of
users residing in a certain region of the virtual world and thus
requesting the same object and terrain data is hard to predict
and possibly massive. Thus it is clear that their distribution

as well as the maintenance of subscriptions poses scalability
problems. We particularly address a future scenario in which
clients at the network’s edges have high uplink bandwidths.
Due to the multi-tier caching scheme in combination with the
Publish/Subscribe pattern used, objects in memory as well as
unmarked objects in the disk cache are known to be up-to-date.
Furthermore, within highly populated regions this information
is available redundantly. In order to utilize these resources we
apply a distribution scheme similar to the BitTorrent protocol.
The basic idea is that each HyperVerse client makes accessible
cached information in a Torrent-like manner, i.e. data are split
into individually addressable pieces. When a user requests data
of a certain region, a number of other clients can be used to
concurrently transfer pieces of data that are already present in
their caches. For this the distributed backbone consisting of
public servers (being described in section II-B) keeps track of
the clients’ AoI. According to the interest management model
described above and by choosing an appropriate value for Λ
and using an adequate federation scheme for the backbone
service, the update frequency in individual servers can be kept
manageable.

Clients use the backbone service in order to retrieve a (size-
constrained) subset of nearby peers along with their AoIs.
Knowing that peers at least contain an up-to-date version of
objects within their AoI, a client uses this information in order
to compute the coverage of its own AoI by peer AoIs. In a first
step peers are used to retrieve meta-information on all objects
that reside in areas that are covered by peers’ AoIs. From this
information the redundancy degree of objects within different
portions of the covered area is computed based on the peers’
AoI. Pieces of objects are then retrieved concurrently from
all peers whose AoI contains the object’s position. AoIs in
low-density regions may contain portions uncovered by peers.
Objects from within such portions will be retrieved from the
backbone service which at the same time serves as initial
seed for the Torrent-based distribution of data. An optimum
peer selection strategy is still being investigated. In the current
version random peers are used although ideally the peer subset
should be chosen in a way that optimizes AoI coverage as
well as object redundancy. Without going into further detail,
a Publish/Subscribe extension to this Torrent-based scheme
can be realized by clients propagating object piece updates to
peers that have recently requested a given object. Since objects
consist of many pieces, the probability of not receiving any
piece update is comparably low and can only occur if all peers
of which the object pieces have been received are offline. If at
least some piece updates have been received, any remaining
pieces can be actively requested by updating the peer set after
a certain threshold.

B. Federated Backbone Service

As motivated earlier in this section, a two-tier P2P approach
has been chosen in order to allow for lightweight clients
and handle varying churn rates. Public HyperVerse servers
can be thought of as a kind of federated “3D Web Servers”.
Objects can be published by adding a new public server to the



backbone federation or by uploading them to existing servers
- their providers possibly demanding a fee for this service.
By this means, public server providers are incentivized in
a way that is similar to today’s WWW and abides existing
business models. The responsibilities of public servers consist
in tracking client AoIs and thus connecting nearby peers for a
Torrent-based distribution and a P2P exchange of movement
information. Public servers also serve as initial seeds for all
objects they contain. Initial seeds of world-specific terrain data
are redundantly and equally distributed among all servers.

It is clear that the federation scheme underlying the public
server backbone needs to be organized in a way that balances
load between them. Apart from this it must provide simple
facilities to perform range queries in order to efficiently
retrieve the peer sets of client AoIs. Although to date it is
not yet clear which of them will be actually chosen, several
promising candidate technologies have been identified. Among
them the P-Grid [1] system represents an efficient structured
overlay network based on the concept of a distributed trie.
It achieves highly efficient lookup operations and guarantees
load-balancing of storage and query load. By preserving key
order it furthermore supports range queries. Another interest-
ing fact is that approaches relying on a space-based federation
of public servers can capitalize on research stemming from the
field of mobile ad hoc networks. One federation scheme we are
currently testing for applicability is e.g. loosely based on the
distributed and scalable GRID location service [13]. Moreover
we investigate in how far techniques and methods of swarm
intelligence are applicable in order to realize a decentralized
and self-organized network of public servers. This includes the
evaluation whether decentralized control algorithms for public
servers can be combined with efficient routing protocols in
order to support the requirements mentioned above.

C. Individual Dynamic Instantiation

The Torrent-based distribution of 3D data described above
is suitable to mitigate the problem of distributing the same
object or world data to a massive number of clients result-
ing from high avatar densities in confined virtual regions.
Under such circumstances, the problem of mutual visibility
and thus exchange of motion information remains. Apart
from exhibiting a fan-in problem at clients, it also hampers
usability since from a user’s perspective it is not reasonable
to visualize an unlimited number of nearby avatars. This
problem already occurs in today’s MMOGs, so the counter-
measure of so-called instantiated sessions has been developed
in this domain. Using this technique, several separated and
dynamically instantiated “copies” of the same region are
created, each copy allowing a certain maximum number of
users. This not only improves usability but also scalability
since instances can be handled separately on machines in
the provider’s server farm. Within the HyperVerse, this is
not a desirable solution since it precludes interaction between
users residing in different instantiated sessions. Accordingly,
we investigate how a dynamic and individual instantiation
based on an avatar’s social bias can be provided. In this

context, the social bias is auto-generated information on an
avatar’s position in the social network based on its history of
interaction with other avatars. Using this information, rather
than separating instances, it is necessary to provide a dynamic
individual instance for each user in a scalable way whenever
avatar density in a certain region exceeds a certain threshold.
In each individual instance, only relevant avatars shall be
visualized, thus separating out and/or coarsely summarizing
dispensable information. Interaction across these instances is
possible since each avatar is present in individual instances
of all user’s that share a similar social bias. Non-overlapping
transitive relations are not approached at this stage though.

Extending 3D space by additional dimensions which al-
low an avatar’s social bias to be encoded as position in a
multidimensional space seems alluring. Using an appropriate
encoding, a simple Euclidean distance between these positions
could be interpreted as “social connectedness”. The interest
management scheme depicted above could then be extended to
use higher dimensional FoV and AoI sphere abstractions. Un-
fortunately it is easy to see that social relationships between an
unlimited number of users cannot be represented by positions
in any finite-dimensional metric space, since it would require
encoding a potentially unlimited amount of information in a
fixed-size position vector. The usage of non-metric topological
spaces and an appropriate definition of closeness appears to
hold the key for a scalable implementation but requires further
research.

D. Multilevel Consistency

The consistency of distributed data and state is an important
issue which needs to be addressed at the design stage of any
distributed environment. We classify consistency problems into
data consistency problems arising from data replication and
update propagation problems resulting from the distribution
of global state representations among adjacent users.

Consistency in centralized environments is comparably easy
to achieve because only a single copy of the data or state rep-
resentation exists on a central instance (server). As motivated
in section II, there are several arguments which suggest that
centralized approaches are not suitable for a global scale vir-
tual environment. Accordingly, we expect such environments
to be based on decentralized federated infrastructures. For
the sake of scalability it is hardly possible to provide strict
consistency for the whole virtual world targeting global scale
user numbers. Therefore we introduce the term world partition
representing a designated virtual region along with all users
within. Hereby the virtual world can be arbitrarily subdivided
in several world partitions which are not necessarily disjoint.
We define the weight of a world partition as a function
w : R × N → R of the region’s area and number of users
within. In order to guarantee consistency within these world
partitions, we use a multilevel consistency model. Besides the
given application scenario, the weight of a world partition is
decisive for the guaranteed consistency level. The maximum
consistency degree that can be provided is reciprocally pro-
portional to the weight of the a world partition. That is, in



a “lightweight” world partition we ensure higher consistency
levels than in a “heavier” one. We are confident that this
relaxation of the consistency notion is expedient for massive
virtual environments since e.g. small consistency variations
of avatars in a user’s FoV become less perceptible and thus
crucial the more avatars are visible.

III. A PROTOTYPE HYPERVERSE IMPLEMENTATION

In this section we will briefly describe the current state of
a HyperVerse prototype that has been implemented based on
the aforementioned concepts. It consists of a lightweight 3D
browser which is based on a network-aware engine capable of
retrieving, caching and rendering 3D terrain and object data
from a Web Service based backbone service. The HyperVerse
browser as well as the underlying engine serve as a prototype
reference implementation which we use to evaluate different
approaches. In order to perform “simulations” using the actual
implementation while at the same time saving resources, the
actual 3D visualization can be detached from the browser.
In this mode, the client is remotely controllable via a Web
Service. This can be used in order to create a number of
client instances on a test cluster, manage them and retrieve
measurands via a centralized controller based e.g. on real-
world mobility models that are available from the MANET
research community [12].

a) HyperVerse Browser: The HyperVerse browser is
a thin-client interactive 3D application combining concepts
known from today’s Web browsers (like e.g. Bookmarks) and
virtual globes (like e.g. the use of geo-referenced objects,
geography-based navigation, satellite imagery and topographic
height data) with an avatar-based interaction and navigation
known from MMOGs. Based on widespread and cheap game
console hardware - namely the Bluetooth-connected Nintendo
Wii controller, head-tracking facilities have been implemented.
By this means, an immersive 3D experience and fine-grained
interaction between avatars can be provided. Figure 3 shows
the user interface of the HyperVerse browser. Although we
currently use a virtual world that is based on real world topo-
graphic and imagery data, the browser does not depend on this.
The backbone service providing appropriate data, any other
virtual world that uses either a spherical or cartesian coordinate
system can be used. Communication between the browser and
the backbone service as well as other clients is based on Web
Services and defined by descriptive interfaces, thus making
the used protocol traceable and furthering interoperability. The
HyperVerse browser is available at3.

b) HyperVerse Engine: The network-aware HyperVerse
engine is based on Microsoft DirectX and the .NET framework
and is capable of rendering XML-based Collada4 models.
Being a powerful and wide-spread intermediate format, Col-
lada is most prominently used as a 3D inlet of the Google
Earth KMZ4 format with a large pool of available models.
Furthermore the engine supports the rendering of SRTM5

3http://hyperverse.informatik.uni-trier.de
4http://collada.org
5http://www2.jpl.nasa.gov/srtm

Fig. 3. HyperVerse Browser Application

terrain, Blue Marble6 as well as Landsat7 topographic imagery
data. It contains basic dead reckoning technologies for real-
time rendering of object and avatar movement in the face of
network delay, basic geodetic mathematics utilities as well
as an implementation of the space-based interest management
model and the caching scheme described in section II-A.

c) HyperVerse Backbone Service: Since candidate tech-
nologies for the federated backbone service are currently under
investigation, for the time being only a simple Web Service
based Tracker and initial seed service has been implemented.
It serves real-world topographic and imagery data in different
levels of detail as well as object data. According to the Torrent-
scheme described in section II it also keeps track of client AoIs
and is used by the HyperVerse browser in order to retrieve
peers whose avatar’s AoIs subtend that of the local avatar.

IV. RELATED WORK

Similar to our notion, [14] claims that peer-to-peer archi-
tectures are suitable for supporting distributed virtual environ-
ments (DVE). In order to investigate this type of architectures
and to simulate large-scale DVEs in an efficient way, the
authors propose a distributed simulation platform that provides
appropriate performance metrics and contains all the elements
involved in real DVE simulations. Techniques resembling our
Torrent-based data distribution have been introduced to 3D
virtual environments by [8]. The authors propose the P2P
3D Streaming framework FLoD. It allows clients within a
virtual environment to retrieve relevant data from nearby
clients while minimizing perceived transmission delay. An
important contribution of FloD is its support for progressive
meshes and textures by defining so-called base and refinement
pieces. By prioritizing base pieces, the rendering process
can start before all object pieces have been received. The
overlay topology of FloD is based on the Voronoi-based VON
[7] scheme. Evaluations of FloD have shown that P2P 3D
streaming is much more scalable than client-server approaches.
Solipsis [9] is another massively shared P2P virtual reality
system that addresses global-scale user numbers. In order to
tackle the scalability problem and heterogeneous access device

6http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
7http://landsat.gsfc.nasa.gov/



capabilities, it provides adjustable data flows based on varying
awareness radii.

Similar to our notion of providing consistency within virtual
environments, Myriad [15] permits transient inconsistency,
thus relaxing resource requirements in collaborative virtual
environments. [10] considers consistency aspects in distributed
virtual environments and introduces an approach based on
global timestamps. In [6] multilevel consistency addressing the
replication techniques of world data is introduced. CyberWalk
[4] is a DVE using an on-demand transmission approach
for the distribution of the virtual environment to the clients.
Similar to FloD, CyberWalk uses a multiresolution caching
mechanism that reduces model transmission and rendering
times by employing progressive models. Network delay is
mitigated by providing a caching and prefetching mechanism.
Moreover, it allows a client to continue to operate, at least
partially, when a network connection is unavailable.

The paper [3] examines an architecture that supports per-
sistent game state in public server based multiplayer games.
In opposite to our notion, public servers do not provide a
single virtual environment but are separated in the sense that
they provide local per-server virtual worlds for a very limited
number of users. All servers share certain persistent game
items and character capabilities which are contributed and
controlled by the game publisher in a centralized fashion.

V. CONCLUSION AND FUTURE WORK

In the course of this paper we presented key concepts of
the HyperVerse project in which we investigate how global-
scale persistent virtual environments can be provided. In order
to guarantee persistent information without putting scalability
at stake, we have chosen to apply a two-tier hybrid P2P
approach by combining a WWW-like federated public server
backbone with a scalable Torrent-based data distribution.
While our approach resembles the one described in [8], the
main difference is the abdication of highly structured client
overlay topologies. Since we explicitly address a scenario with
Browser-like clients, we assume churn rates to be much higher
than that of any prevalent Peer-to-Peer applications. In order
to mitigate this problem, we use a highly structured federated
backbone acting as Torrent Tracker and interconnecting clients
to a loosely structured and highly churn resilient overlay.
Another noticeable difference is that due to the propagation
of peers’ AoIs information, clients are able to locally decide
which peers contain required data pieces without having to
actively send requests to nearby clients.

The main contribution of introducing a Torrent-based ap-
proach to massive virtual environments is the mitigation of
Flash Crowds - a spontaneous surge of interest in a certain
region of the HyperVerse. The BitTorrent protocol has proven
to successfully address this problem in the context of distribut-
ing large files in today’s WWW. By means of considering
virtual geography and locality aspects that are inherent to
virtual worlds, we argued that massive virtual environments
can benefit from a Torrent-based data distribution much in the

same way. In order to overcome the Flash Crowd related client-
side fan-in problem, we intend to use a dynamic instantiation
approach that is based on the relationship between users and
does not preclude interaction across instances.

While we cannot yet provide a definite answer to the
question which federation scheme shall be used for the mas-
sively distributed public server backbone service presented
in section II-B, we identified some candidate technologies
as well as general directions of research. As a next step,
some of these technologies need to be evaluated. Being a
promising approach, a P-Grid-based backbone service is being
implemented and will be available soon for further evaluations.
In the course of this paper we have also given a brief overview
of our approach to consistency handling which is characterized
by a twofold relaxation of the consistency notion. We argue
that this relaxation is suitable for massive virtual environments
in the sense that it allows a minimization of sensible effects
while being conducive to scalability.

REFERENCES

[1] K. Aberer. P-Grid: A self-organizing access structure for P2P informa-
tion systems. Sixth International Conference on Cooperative Information
Systems (CoopIS 2001), 2172:179–194, 2001.

[2] A. Al-Hamra, A. Legout, and C. Barakat. Understanding the properties
of the bittorrent overlay. Technical report, INRIA Sophia Antipolis,
France, 2007.

[3] C. Chambers, W. chang Feng, and W. chi Feng. Towards public server
mmos. In Proceedings of 5th ACM SIGCOMM workshop on Network
and system support for games (NetGames ’06), page 3, New York, USA,
2006.

[4] J. H. P. Chim, R. W. H. Lau, H. V. Leong, and A. Si. Cyberwalk: a web-
based distributed virtual walkthrough environment. IEEE Transactions
on Multimedia, 5(4):503–515, 2003.

[5] B. Cohen. Incentives build robustness in bittorrent, 2003. cite-
seer.ist.psu.edu/cohen03incentives.html.

[6] J. C. de Oliveira. Issues in large scale collaborative virtual environments.
http://citeseer.ist.psu.edu/oliveira01issues.html.

[7] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: a scalable peer-to-peer
network for virtual environments. Network, IEEE, 20(4):22–31, July-
Aug. 2006.

[8] S.-Y. Hu, T.-H. Huang, S.-C. Chang, W.-L. Sung, J.-R. Jiang, and B.-
Y. Chen. Flod: A framework for peer-to-peer 3d streaming. In The
27th Conference on Computer Communications (IEEE INFOCOM ’08),
2008.

[9] J. Keller and G. Simon. Solipsis: A massively multi-participant virtual
world. In PDPTA, pages 262–268, 2003.

[10] S.-J. Kim, F. Kuester, and K. H. Kim. Towards enhanced data
consistency in distributed virtual environments. volume 5006, pages
436–444. SPIE, 2003.

[11] J. Kubiatowicz. Extracting guarantees from chaos. Commun. ACM,
46(2):33–38, 2003.

[12] J.-Y. Le Boudec, S. PalChaudhuri, and M. Vojnovic. Perfect simulations
for random trip mobility models. Proceedings of the 38th Annual
Simulation Symposium 2005.

[13] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A
scalable location service for geographic ad hoc routing. In Proceedings
of the 6th annual international conference on Mobile computing and
networking (MobiCom ’00), pages 120–130, New York, USA, 2000.

[14] S. Rueda, P. Morillo, and J. M. Orduna. A Peer-To-Peer Platform for
Simulating Distributed Virtual Environments. In Proceedings of the 13th
International Conference on Parallel and Distributed Systems (ICPADS
’07), 2007.

[15] B. Schaeffer, P. Brinkmann, G. Francis, C. Goudeseune, J. Crowell,
and H. Kaczmarski. Myriad: scalable vr via peer-to-peer connectivity,
pc clustering, and transient inconsistency. In Proceedings of the ACM
symposium on Virtual reality software and technology (VRST ’05), pages
68–77, New York, NY, USA, 2005. ACM.


