
Proceedings First International Workshop on

Massively Multiuser Virtual Environments

March 8, 2008

Contents

Foreword 2

Program committee 3

Scalable Reputation Management for P2P MMOGs,

Guan-Yu Huang, Shun-Yun Hu, Jehn-Ruey Jiang 3

Clustering Players for Load Balancing in Virtual Worlds,

Simon Rieche, Klaus Wehrle, Marc Fouquet, Heiko Niedermayer, Timo Teifel, Georg Carle 9

Consistency Management for Peer-to-Peer-based Massively Multiuser Virtual Environments,

Gregor Schiele, Richard Sueselbeck, Arno Wacker, Tonio Triebel, Christian Becker 14

Data Aggregation Method for View Range Computation on P2P-based VCS,

Ryo Nishide, Dai Ito, Masaaki Ohnishi, Shinichi Ueshima 19

An Implementation of a First-Person Game on a Hybrid Network,

Anthony Steed, Bingshu Zhu 24

Solipsis: A Decentralized Architecture for Virtual Environments,

Davide Frey, Jérôme Royan, Romain Piegay, Anne-Marie Kermarrec, Emmanuelle Anceaume,

Fabrice Le Fessant 29

The HyperVerse - Concepts for a Federated and Torrent Based "3D Web",

Jean Botev, Markus Esch, Alexander Höhfeld, Hermann Schloss, Ingo Scholtes 34

Towards an Authentication Service for Peer-to-Peer based Massively Multiuser Virtual Environ-

ments,

Arno Wacker, Gregor Schiele, Sebastian Schuster, Torben Weis 40

Index of authors 46

1

Foreword

With the increasing number of potential users of virtual and augmented reality systems, as indicated by the recent
booming of massively multiuser online societies, the design of distributed, massively multiuser virtual environments
(MMVEs) becomes more and more important, posing new requirements on both distribution platforms and virtual
reality systems. Facing these challenges is a community-spanning e�ort, necessitating the pooling of the resources
and experiences of the virtual reality and the networking and distributed computing communities. The aim of this
workshop is to provide a link between these communities to foster the development of highly distributed, �exible and
robust virtual environments. We aim to gather the practitioners and researchers in these �elds under one roof to
discuss their �ndings, incite collaboration and move the state of the art forward.

2

Program committee

Dewan Tanvir Ahmed, University of Ottawa

Gregor Schiele, University of Mannheim

Arno Wacker, University of Duisburg-Essen

Christian Bouville, IRISA

Bing-Yu Chen, National Taiwan University

Kuan-Ta Chen, Academia Sinica

Yiorgos Chrysanthou, University of Cyprus

Mike Eissele, University of Stuttgart

Abdennour El Rhalibi, Liverpool John Moores Univer-

sity

Joerg Haehner, University of Hannover

Aaron Harwood, University of Melbourne

Jehn-Ruey Jiang, National Central University

Pedro Morillo Tena, University of Valencia

Jauvane C. Oliveira, LNCC

Juan Manuel Orduna, University of Valencia

Shervin Shirmohammadi, University of Ottawa

Gwendal Simon, ENST Bretagne

Sandeep Singhal, Microsoft Corporation

Shinichi Ueshima, Kansai University

Krzysztof Walczak, Poznan University of Economics

Suiping Zhou, Nanyang Technological University

Daniel Weiskopf, University of Stuttgart

Ben Leong, National University of Singapore

Shun-Yun Hu, National Central University

3

Scalable Reputation Management for P2P MMOGs
Guan-Yu Huang1, Shun-Yun Hu2, Jehn-Ruey Jiang3

Department of Computer Science and Information Engineering
National Central University, Taiwan, R.O.C.

1aby@acnlab.csie.ncu.edu.tw2syhu@yahoo.com 3jrjiang@csie.ncu.edu.tw

Abstract—Networked virtual environments (VEs) such as Mas-
sively Multiplayer Online Games (MMOGs) have become very
popular in recent years. However, existing client-server archi-
tectures suffer from resource constrains when the number of
concurrent users increases. Research on peer-to-peer virtual envi-
ronments (P2P-VEs) thus tries to create more scalable and afford-
able VEs via the resource sharing of mutually cooperating clients.
However, P2P approaches face the problem of client misbehavior
where clients may not properly process the game rules. Without
the monitoring and control from servers, the misbehavior could
negatively affect a game’s normal operations. In this paper, we
present REPS, a distributed reputation management system for
P2P-based MMOGs that allows trustworthy clients be identified.
Based on the mutual rating and reputation query among users,
REPS provides a scalable and reliable reputation mechanism
that helps users to estimate the trustworthiness of others, so that
subsequent grouping, trading, or superpeer selection decisions
are made more reliably.

I. I NTRODUCTION

Massively Multiplayer Online Games (MMOGs) such as
World of Warcraft [1] and Second Life[2], where over hun-
dreds of thousands of players assume virtual identities and
engage in various interactions, have become very popular in
recent years. These virtual worlds are very attractive as they
provide immersive 3D environments that people can constantly
explore together. As of 2008, there are more than 12 millions
registered Second Life accounts and over 10 millions paying
subscribers in World of Warcraft. As user population grows,
the traditional client-server architecture will suffer from the
server’s limited bandwidth and processing power. To solve this
problem, peer-to-peer virtual environments (P2P-VEs, e.g.,
SimMud [3], Colyseus [4], and VON [5]) have thus been
proposed.

In client-server architectures, the server receives and pro-
cesses all the user-generated events. This ensures that the
action of each participant is monitored, and game rules are
executed objectively as the designers have intended. Cheating
is also restricted as all important processing is done by
the servers. However, P2P-VEs do not have such fairness
guarantee because most server functions are now assumed
by some clients. A client may modify any information that
it possesses and may even assume new identities when it
has cheated for private benefits. Although, most players may
not go to great length to cheat, as modifying the game code
requires certain technical skills. But even if only a small
number of users are successful at cheating, gameplay can still
be disrupted seriously.

Fortunately, we observe that the nature of MMOGs is highly
social, and users often invest large amount of time and energy
to build their in-game persona to ensure their standings in
the virtual world. Users often are also bounded by guilds or
other social organizations, as opinions from other users affect
one’s reputation and social experiences even more than other
in-game activities. In other words, there exists strong social
forces in successful MMOGs where active users typically
value highly their status and reputations among peers. Such
reputation thus may be exploited to facilitate certain game
operations, such as the selection of trustworthy clients for im-
portant functions. We have seen similar mechanism in online
marketplaces such as eBay and Yahoo Auctions, where online
reputations based on mutual user ratings are used to estimate
the trustworthiness of a user. If such reputation mechanism
can be adopted in P2P MMOGs, it might help users to make
decisions on whether to interact with a particular peer, or to
select trustworthy clients for assigning more responsibilities.

In this paper we propose REPS, a reputation management
system for P2P MMOGs based on peer-rated reputations. Each
user has a reputation value based on other users’ subjective
opinions during their interactions. Reputation values are stored
at some trustworthy neighbors calledtrust nodes, so that they
may be accessed distributively without requiring a server. To
select the trust nodes, we useNeighbor Trust node Selection
(NTS)to choose trustworthy peers. NTS uses statistical regres-
sion method to choose trustworthy users, so that only users
matching the strictest reputation criteria are chosen.

The rest of this paper is organized as follows. Section II
provides background on reputation management and P2P-VEs.
Section III presents our problem formulation and challenges in
distributed reputation management. We describe the design of
REPS in Section IV, and discuss its characteristics in Section
V. Conclusions are given in Section VI.

II. BACKGROUND

A. Reputation management

Recently, many P2P-based reputation systems have been
proposed, often in the context of e-commerce (e.g., [6], [7],
[8], [9], PeerTrust [10], Beta [11]). The goal of these systems
is to compute the reliability of a peer and predict its future
behavior of a specific identifier based on past interactions with
the peer. The users are often buyers and sellers in an existing
distributed or semi-distributed e-commerce environment. The
reputation value represents a summary view for the user’s

4

behavior, and can be used as the reference to warn or con-
vince other users. By quickly identifying whether an user is
trustworthy, interactions withmalicious userswho would cheat
for private benefits can be avoided.

A peer’s reputation value in these systems is calculated by
collecting the local evaluations from other users. For example,
in [12] and [8], the sum of the rating scores from every
transaction is used to compute each user’s reputation value.
To make reputation values globally accessible and reliable,
PeerTrust [10] normalizes the values by specific weights
computed from each user’s global reputation.

Some recent approaches like [13], [14], [15] and [16] use
the Bayesian method that takes a binary input (i.e., positive
or negative) to predict the cheating probability of the next
transaction with a user from past experience. [17] provides
the QoS experience vectors to perform reputation evaluation
on many levels to determine more precise reputation values.

Besides evaluating other users, users will also need to
know someone’s reputation value for various tasks. To query
reputations in P2P environments, a decentralized method is
often used to aggregate reputation scores from various places
to compute the global reputation value. In a client-server
architecture, the server stores all the reputation data, and users
just need to query the server. However, in decentralized envi-
ronments, often a P2P storage such as Chord [18], CAN [19],
or P-Grid [20] is used to distributively store the reputation
data. For example, [17] uses Chord to find the successors of
each user A, where A stores all reputation records evaluated
by other users on its successors. When another user B needs
to know A’s reputation, it will hash A’s identifier to aggregate
the reputation evaluations from A’s successors. Similarly, [12]
uses the identifier hash to discover successors for storing the
reputation values with CAN or Chord.

Some other problems also exist in P2P reputation manage-
ment, for example: how to distinguish honest from dishonest
people, or to detect dishonest ones pretending to be honest
[21]? How to filter extreme (i.e. too positive or negative) or
fake reputation evaluations in order to ensure correctness? And
how to prove that a reputation management is reliable for a
given application? There are many works that discuss these
general problems for reputation management (e.g., [6], [22]
and [8]). We will discuss how REPS deal with these problems
in P2P MMOG scenarios.

B. P2P-VEs

In P2P-VEs, every user has a visibility range calledarea
of interest (or AOI, see Fig. 1). The AOI is often circular,
and other users within the AOI are called theAOI neighbors.
Users can exchange messages to comprehend the environment
around them, and see the dynamic updates from other AOI
neighbors. The key to scalable P2P-VEs is based on the fact
that users have limited view within their AOI and only need to
observe changes within the AOI. The scalability of the whole
environment thus can be extended if each user only exchanges
messages with its AOI neighbors, without going through the
server.

Fig. 1. Large circle is the AOI of the center user.

In some approaches (e.g., [3], [23], [24], [25]), the whole
world is divided into serval disjoint sub-regions in order to
manage information updates distributively. Some participants
with better capacities are chosen assuperpeersto relay in-
formation (e.g., position updates and the event notifications)
for other users. Lo et al. [26] define a superpeer as a special
role that can provide services to non-superpeers and describe
several superpeer selection methods.

For the many P2P-VE schemes that adopt superpeers,
whether the selected clients are trustworthy is essential for
the system’s. One of the implications for REPS thus is a
reliable method to select trustworthy nodes that could assume
important superpeer functions.

III. PROBLEM FORMULATION AND CHALLENGES

Our goal is to build a scalable reputation management
system that supports P2P MMOGs by developing a distributed
method to rate, store, and query reputation values. The main
problem is how to store the reputation scores on reliable peers
and query them effectively. We first assume the following for
our scenario:

1. Every user has a fixed AOI radius because most current
MMOGs’ use a fixed visual range, where users see each others
only when they are within each other’s AOI. Between two
mutually visible users, certain game-specific interactions can
occur (e.g., talking, fighting, trading, etc.). The users within
AOI, or AOI neighbors, change periodically as users move
around in the virtual world.

2. We assume that there exists some P2P-VE overlays that
provide a list of AOI neighbors for each user (e.g., SimMud
[3], Colyseus [4], VON [5]). So any user may connect and
exchange messages directly with its AOI neighbors.

3. Two mutually visible users can rate each other with a
score of positive, neutral, or negative (+1, 0, -1) based on
their past interactions. A reputation record follows the form
of (rater, rated-user, evaluation), whererater is the user who
makes the rating,rated-useris the user evaluated by the rater
andevaluationrecords the actual rating.

4. A user can only give a single rating to another user.
However, the rating can be changed later at any time if the
original rater wishes to.

5. We assume that if a user’s reputation exceeds certain
threshold, the probability of cheating is low, as more effort
than others has been spent to build the reputation (Fig. 2).

5

Fig. 2. Relation between probability of cheating and reputation value.

To build a scalable reputation system for P2P MMOGs for
the above scenario, we outline some challenges below:
Reputation evaluation User experiences are the basis for the
reputation values in a reputation system. How to efficiently
and precisely represent user perceptions thus is an important
problem. Reputations are also meaningless if most users do not
provide ratings. In MMOGs, players often focus more on the
game itself than miscellaneous activity such as reputation eval-
uation, mechanisms to encourage user rating thus is needed.
To provide suitable evaluations, we need a simple and efficient
method that allows user evaluations be done conveniently, and
reputation values be aggregated efficiently.
Storage and queryHow to store and query reputations in a
fully distributed environment is the main challenge for a P2P
reputation system. To ensure that the system would scale, we
need to store the data with a distributed method while avoiding
any server or client overloads. To efficiently query reputation
data from other users, two problems need to be addressed:
how to find the users that store the reputation data, and how
to collect the data with minimal delays.
Reliability There are more transactions like trading, talking
and grouping [27] in MMOGs than in online auction sites,
where over 90% of users have only transacted once [28].
Therefore, ensuring that a reputation system provides reliable
and trustworthy information is very important. In P2P envi-
ronments, users may modify the reputation data they keep for
private benefits. This would cause misunderstandings among
users and unbalanced gameplay. Prevention, detection, and
recovery of cheating behavior thus are needed.

IV. D ESIGN OFREPS

A. Local reputation evaluation

In REPS, users rate one another when they are within each
others’ AOI, because interactions can only occur with AOI
neighbors. For example, in Fig 3, users C and F could rate A
because they are within A’s AOI. The rating should also occur
with a probability related to the level of interactions. The more
exciting the interactions and the more unfamiliar the users
are to each other, the higher the probability for rating. The
interacting users will generate arating right authorized by

Fig. 3. The rating condition in REPS

the rated user to the potential rater, so that it can give a rating
at some convenient time. The rating right is used to prevent
some raters to rate users that they have never interacted with.
The rating right contains the rated user’s name and IP address
and is recorded at the rater so that the rater can choose a time
that is convenient to give ratings. For example, if user C rates
user A with a score of 1, then a rating record of (C, A, 1) will
be stored at A’s trust nodes, who would update A’s reputation
based on A’s last reputation value. Each user can have only
one rating about another user, but can also change the rating
when impression for the other user has changed. This way
users may mutually monitor each other’s behaviors.

B. Reputation storage and query

In order to scalably store and query the reputation records,
a user identifies and choosesN trustworthy users as itstrust
nodes from its current and recent AOI neighbors (called the
potential neighbors). Trust nodes are chosen from potential
neighbors according toNeighbor Trust node Selection (NTS)
that will be described next. Once reliable peers are found
through NTS, they are recorded in atrust list containing the
chosen trust nodes’ identifiers and IP addresses. The trust list
is stored at the user to allow easy inquiry by others. To give
a rating to user A, raters first query A’s trust list from A, and
then send their ratings (i.e., reputation records) directly to all
trust nodes to update A’s reputation value.

When a user B is within user A’s AOI, B can request for
A’s trust nodes in order to query for A’s reputation value. User
A would send its current trust list to B, where B randomly
choosesn (where 1≤ n ≤ N) trust nodes from the list to
query. The chosen trust nodes will then respond the reputation
value of A to B. The reason for asking reputation values from
n trust nodes is to prevent any trust nodes from manipulating
the stored reputation values. A reputation value is recognized
only if it is returned by a majority of the trust nodes.

A user’s potential neighbors would expire after a certain
timeout, but may be renewed if the neighbors revisit a user’s
AOI. This has the effect that a trust node will also expire if
it has not been a user’s recent AOI neighbor. By limiting the
time a node may be a trust node, users with high reputation

6

TABLE I
EXAMPLE OF PROPORTIONALITY MISREPRESENTATION

User total score, TS(u) number of ratings, V(u) P(u)
A 30 100 0.3
B 9 10 0.9

can be saved from being always selected as trust nodes and
bombarded with requests.

C. Neighbor Trust node Selection (NTS)

In REPS, each user requiresN trust nodes that are chosen
via Neighbor Trust node Selection(NTS). Many existing
reputation systems use peer rating to devise the reputation
(e.g.PeerTrust[10]), where an useri can give another useru a
scoreS(u, i) of either positive or negative, and the reputation
is simply the summation of all scores, or atotal score(TS).
Other methods also exist in auction sites such as eBay or
Yahoo Auctions, where a ratioP (u) indicates the proportion
between the total scoreTS(u) and the total number of ratings
V (u). The higher theP (u), the more trustworthy a given user
u is.

TS(u)=
∑

S(u, i)

P(u) =
TS(u)
V (u)

But which is better? If A scores 30 out of 100 ratings, and
B scores 9 out of 10 ratings. According toTS(u), A is more
trustworthy as its total rating is higher than B’s. But the ratio
P (u) of B is higher than A’s, which indicates that B may
be more trustworthy. Yet since 100 people are willing to rate
A and only 10 persons have rated B, the significance of A’s
rating may be higher. Some proportionality misrepresentations
thus exist in existing approaches (Table I).

Ideally, we would like to combine the effects of both the
total score and the ratio of positive rating, as they are both
meaningful for a person’s reputation. However, we do not
know which is more important as it may differ across regions
or MMOGs, where the willingness to rate can vary. We thus
design Neighbor Trust node Selection(NTS)that combines
both TS(u) and P (u) in a flexible way. A simple way to
conceptualize NTS is in Fig. 4, where the x-axis represents
all possible ratio values and the y-axis represents all possible
total scores. There is also an area calledtrust regionwhere a
useru can be selected to become a trust node if its reputation
point lies within the trust region (i.e.P (u) > Pbound and
TS(u) > TSbound, where Pbound is between 0 and 1 and
TSbound is between the most negative and the most positive
ratings). If we want to selectN trust nodes, we can selectN
points (i.e. clients) from the trust region. If more trust nodes
are needed, the area of the trust region is adjusted by changing
Pbound andTSbound. To adjustPbound or TSbound, we define
the valuem as the absolute value of the regression coefficient
that represents the slope of the regression line for all points
in the trust region, wherēP is the averageP (u) and T̄ S is
the averageTS(u) of all users within the trust region:

Fig. 4. Trust plane in REPS

m =

∣∣∣∣∣∣
∑

(P (u)− P̄)(TS(u)− T̄ S)∑
(P (u)− P̄)2

∣∣∣∣∣∣
The regression coefficient shows the pattern of distribution

for all reputation points, and taking absolute values means
that NTS only cares about the direction of the distribution
but not the shape of the regression line. Ifm > 1, the trend
for points in the trust region is towardsTS(u), its weight thus
should be increased. Ifm < 1, it means that the point positions
are tilting towardsP (u) in the trust plane, and NTS should
increase the weight forP (u). The actual adjustments∆Pbound

and∆TSbound for Pbound andTSbound are adjustment ratios
(i.e., they are percentages of the change in the values ofPbound

andTSbound), and depend on the value ofm, where∆Pbound

/ ∆TSbound = m. NTS increases∆Pbound and ∆TSbound

simultaneously with a fixed ratiom until the number of
the candidate points matches the system demand. Likewise,
∆Pbound and∆TSbound could also decrease with the ratiom
when the required trust nodes are less.

When the number of AOI neighbors is not large enough,
trust nodes are chosen randomly until the number of users
exceeds a thresholdδ, then NTS is used again. When NTS is
first used, we initializem, Pbound andTSbound to be 1.0, 1.0
andn wheren is the number of current online users and the
area of the trust region would be 0. We then reducePbound and
TSbound to extend the trust region by∆Pbound / ∆TSbound

= 1 in order to find new trust nodes or remove old ones, as
the set of potential neighbors change with time.

V. D ISCUSSIONS

A. Reputation evaluation

REPS uses direct rating as the evaluation method, where
users give a simple score (-1, 0, 1) to represent their impres-
sions for each reputation evaluation. It is thus very simple
to integrate one’s reputation value. A user’s trust nodes can
update reputation values directly and individually whenever
they get a new reputation record. The rating right control lets

7

users to recognize which users can rate them and ensures that
only users who have interacted can rate each other. REPS
thus provides a simple and effective method to represent and
compute the reputation value.

B. Storage and query

Users in REPS store their reputation data on their trust
nodes, this prevents a user from modifying its own reputations,
as other users store and query reputation values directly with
the trust nodes. A rated user provides only the trust list to a
rater, and is not responsible to maintain his or her reputation
value.

Querying reputation data can also be done efficiently as a
querying user only needs to obtain the trust list, then it can
ask some chosen trust nodes directly. As the number of users
increases in a system, the number of queries may also increase
for a given user. The overhead for each trust nodes can be
reduced by increasing the number of trust nodesN for each
user, so that more trust nodes may share the load of querying.

C. Reliability

The effect of malicious users on the system is reduced in
REPS due to themutual monitoringamong users. As everyone
can rate another user and update their scores when new situa-
tions occur, a cheating user will soon be rated very negatively
if some misbehavior is discovered. The cheater’s reputation
will reduce rapidly and its privileges or responsibilities could
be removed.

For the storage of reputation values, as they are stored on
multiple trust nodes, improper modifications by any single
trust node is masked from the correctly maintained records in
other trust nodes. Trust node misbehavior thus will impact the
system minimally and can be quickly detected. As reputations
are stored and accessed at trust nodes instead of the rated user,
users also cannot manipulate their own reputation values for
unfair benefits. On the other hand, it is in a user’s best interest
to provide a list of trustworthy trust nodes to any potential
rater, as it will surely wish that its reputation value is recorded
and accessed objectively.

VI. CONCLUSION

REPS provides reputation management to support P2P
MMOGs by allowing users to rate each other after some
interactions, and select trustworthy nodes based on these
ratings. Through the use of trust nodes, reputation records
can be stored and accessed distributively without relying on
a centralized server. Reputation values can thus be built and
used in a scalable way. We also present Neighbor Trust node
Selection (NTS) that chooses the trust nodes by combining two
intuitive factors (e.g., a user’s total score and positive rating
ratio) and adjusts each factor’s weights to adapt for different
scenarios. Dynamic adjustments of the trust region finds
the minimum area that satisfies a given number of required
trust nodes, effectively selecting trustworthy nodes using the
strictest criteria. We plan to evaluate REPS’s effectiveness via
simulations as our future work.

REFERENCES

[1] “World of warcraft,” http://www.worldofwarcraft.com/.
[2] “Second life,” http://secondlife.com/.
[3] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support for

massively multiplayer games,” inProc. INFOCOM, 2004, pp. 96–107.
[4] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: A distributed architec-

ture for online multiplayer games,” inProc. NSDI, 2006, pp. 155–168.
[5] S. Y. Hu, J. F. Chen, and T. H. Chen, “Von: A scalable peer-to-peer

network for virtual environments,”IEEE Network, vol. 20, no. 4, pp.
22–31, 2006.

[6] Y. Atif, “Building trust in e-commerce,” IEEE Internet Computing,
vol. 6, pp. 18 – 24, 2002.

[7] A. Josang, R. Ismail, and C. Boyd, “A survey of trust and reputation
systems for online service provision,”Decision Support Systems, vol. 43,
no. 2, pp. 618–644, 2007.

[8] C. Dellarocas, “Analyzing the economic efficiency of ebay-like online
reputation reporting mechanisms,” inProc. 3rd ACM conference on
Electronic Commerce, 2001, pp. 171 – 179.

[9] K. Aberer and Z. Despotovic, “Managing trust in a peer-to-peer infor-
mation system,” inIn Proc. ACM CIKM, 2001, pp. 310 – 317.

[10] L. Xiong and L. Li, “Peertrust: Supporting reputation based trust for
peer-to-peer electronic communities,”IEEE TKDE, vol. 16, pp. 843–
857, 2004.

[11] R. Ismail and A. Josang, “The beta reputation system,” inProc. 15th
Bled Conference on Electronic Commerce, 2002.

[12] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust al-
gorithm for reputation management in p2p networks,” inProc. WWW,
2003.

[13] S. Buchegger and J.-Y. L. Boudec, “A robust reputation system for p2p
and mobile ad-hoc networks,” inProc. Second Workshop on Economics
of P2P Systems, June 2004.

[14] L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt,
“Ratings in distributed systems: A bayesian approach,” 2001.

[15] S. Ganeriwal and M. B. Srivastava, “Reputation-based framework for
high integrity sensor networks,” inProc. SASN ’04, Washington, D.C.,
USA, October 2004.

[16] R. Zhou and K. Hwang, “Powertrust: A robust and scalable reputation
system for trusted peer-to-peer computing,”IEEE Transaction on Par-
allel and Distributed Systems, vol. 18, no. 4, pp. 460–473, 2007.

[17] Y. Zhang and Y. Fang, “A fine-grained reputation system for reliable ser-
vice selection in peer-to-peer networks,”IEEE Transaction on Parallel
and Distributed Systems, vol. 18, no. 8, pp. 1134–1145, 2007.

[18] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. ACM SIGCOMM, 2001, pp. 149–160.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” inProc. ACM SIGCOMM,
August 2001.

[20] K. Aberer, “P-Grid: A self-organizing access structure for P2P informa-
tion systems,”LNCS (CoopIS 2001), vol. 2172, pp. 179–194, 2001.

[21] M. Srivatsa, L. Xiong, and L. Liu, “Trustguard: Countering vulnerabil-
ities in reputation management for decentralized overlay networks,” in
Proc. 14th Intl World Wide Web Conf, 2005, pp. 422–431.

[22] Y. Yan, A. El-Atawy, and E. Al-Shaer, “Ranking-based optimal resource
allocation in peer-to-peer networks,” inProc. INFOCOM, 2007, pp.
1100–1108.

[23] S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito, “A distributed event
delivery method with load balancing for mmorpg,” inProc. Netgames,
2005.

[24] H. Lee and C. Sun, “Load-balancing for peer-to-peer networked virtual
environment,” inProc. Netgames, Oct. 2006.

[25] S.-Y. Hu, S.-C. Chang, and J.-R. Jiang, “Voronoi state management for
peer-to-peer massively multiplayer online games,” inProc. NIME, 2008.

[26] V. Lo, D. Zhou, Y. Liu, C. GauthierDickey, and J. Li, “Scalable
supernode selection in peer-to-peer overlay networks,” inProc. of HOT-
P2P, 2005, pp. 18 – 27.

[27] K.-T. Chen, P. Huang, and C.-L. Lei, “Game traffic analysis: An
MMORPG perspective,”Computer Networks, vol. 51, no. 3, 2007.

[28] P. Resnick and R. Zeckhauser, “Trust among strangers in internet trans-
actions: Empirical analysis of ebays reputation system,”The Economics
of the Internet and E-Commerce,, vol. 11, pp. 127–157, 2002.

8

Clustering Players for
Load Balancing in Virtual Worlds

Simon Rieche, Klaus Wehrle
Distributed Systems Group
RWTH Aachen University

{rieche,wehrle}@cs.rwth-aachen.de

Marc Fouquet, Heiko Niedermayer, Timo Teifel, Georg Carle
Computer Networks and Internet

University of Tübingen
{fouquet,niedermayer,carle}@informatik.uni-tuebingen.de

Abstract—Massively Multiplayer Online Games (MMOGs)
have become increasingly popular in the last years. So far the
distribution of load, caused by the players in these games, is
not distributed dynamically. After the launch of a new game,
the introduction of new content, during special ingame events,
or also during normal operations, players tend to concentrate in
certain regions of the game worlds and cause overload conditions.
Therefore we propose the use of structured P2P technology for
the server infrastructure of the MMOGs to improve the reliability
and scalability. Previous work segmented the game work into
rectangular areas; however this approach often split a group of
players to different servers, causing additional overhead.

This work presents a cluster-based Peer-to-Peer approach,
which can be used for load balancing in MMOGs or in other
virtual worlds. The system is able to dynamically adapt to the
current state of the game and handle uneven distributions of
the players in the game world. We show through simulation,
also with traces from real online games, that the cluster-based
approach performs better than the previous P2P-based systems,
which split the world in rectangular areas.

I. INTRODUCTION

Computer games have changed in the last years due to the
constantly rising speed and decreasing costs of internet con-
nections. Ever more games offer the possibility, to play with
other players together over the internet. Particularly in Mas-
sively Multiplayer Online Role-Playing Game (MMORPGs) a
virtual world is created, in which thousands of players “live”.
For the players the shared virtual world offers the possibility
that they can talk with other human players, build groups,
friendships and fight together.

Traditionally, a cluster of servers contains one virtual world
of a Massively Multiplayer Online Game (MMOG). But such
an infrastructure is inflexible and error-prone. One would
rather like to have a system that allows disconnecting a
node at runtime while others take over its tasks. Also server-
based MMOGs can have performance problems if players
concentrate in parts of the game world or if some worlds
are overpopulated. Thus, there is a need for load balancing
mechanisms, which Peer-to-Peer (P2P) systems quite naturally
support.

In previous work we showed how such a game can be hosted
on a P2P-based infrastructure [1]. By using the structured
P2P System Content Addressable Network (CAN) [2] as a
basis, we split the game world into disjunctive zones and
distribute them on different nodes of the P2P network. This

happens automatically in such a way that all existing servers
have nearly the same load. But the load balancing separates
the world in a quad tree-like fashion and does not take the
structure of the map into account, which may lead to many
changes of players between the servers. In this case the old
server has to transfer all the state information of the player
to the new server, which is now responsible for this person.
So a main task is to minimize the handovers of players from
one server to another. Another problem are players who are
located close to the border of the area that one server controls.
These players can see parts of the game world on the other
side of the border, therefore they need to be informed about
all updates of dynamic content, i.e. player movements that
happen there.

In MMORPGs it can be frequently observed that players
form groups and walk over the map together. This particularly
becomes problematic, if a whole group of players moves
over a border and thus a large number of players have to
be transferred to the new server. Thus we propose a P2P
infrastructure for MMOGs which takes this behavior into
account.

The distribution of load on the existing servers is thereby
not done by dividing the map into different areas, but via
dividing the players into clusters. Each server receives a group
of players, who are close together. This group is one cluster. If
the group moves on the map, the responsible area of the server
moves with this group. If individual players depart from the
group, they are handed over to another group as soon as they
are closer to the new group than to the previous one. Figure
1 shows as an example several clusters in a virtual world.

The rest of this paper is organized as follows: First we
discuss related work in Section II. Section III shows our

Fig. 1. Several clusters on the map of the virtual world.

9

approach to use structured P2P Systems for MMOGs, Section
IV how the clusters are build, and Section V how to find
clusters in the neighborhood of the map. In Section VI the load
balancing of the cluster is described. Section VII describes the
evaluation, including simulations that use player traces from a
real MMOG, and finally, Section VIII provides conclusions.

II. RELATED WORK

Some efforts have been undertaken to design a MMOG
on a P2P basis, with the server tasks being shared among
the player’s PCs. In [3] and [4] the game world is divided
into zones. Then some peers become zone owners that take
responsibility for computing the server tasks for such a zone.
While this approach is fascinating on one hand, it suffers from
a number of practical problems. Players constantly connect to
and disconnect from the game, often without warning if the
PC crashes or suddenly gets disconnected from the network.
This means that always backup machines are needed to replace
disconnected zone owners. Allowing player’s computers to
calculate parts of the game mechanics makes it harder to
avoid cheating. Another problem is that persistent player data,
for example the progress of the player’s characters in a role-
playing game, need to be saved in a way that makes sure that
no information is lost, as players may have invested a lot of
work into the game. At the same time one has to prevent
players from cheating by modifying data, which would be
possible if it was stored on the player’s local hard drives. This
suggests that some kind of infrastructure provided by the game
manufacturer would still be needed; a full P2P approach does
not appear practical, so we focus on a hybrid P2P approach.
Another challenge is the low upstream bandwidth of most
current Internet connections, probably only peers with a good
connectivity could be considered for becoming zone owners.

Solipsis [5] uses a different approach, as it tries to build a
pure P2P network-based on the neighbourship relations of the
player’s avatars. Each peer has direct connections to all other
peers that are in visible range of the player’s avatar. There is
a real implementation of Solipsis, however currently it is little
more than a distributed chat client. If one wanted to make
it a “real” MMOG, one would be confronted with the same
problems as described above. It is especially difficult to make
such an approach cheat-proof [6].

In our previous work [1] a structured P2P technology is
used for the organization of the underlying infrastructure and
thus for the reduction of downtimes in MMOGs. By using a
CAN-based approach we split the game world in disjunctive
zones and distribute them on different nodes in the P2P
network. Thus, we get the possibility to dynamically connect
and disconnect machines to and from the peer-cluster and to
load-balance the game according to the actions of the players.

The P2P technology makes it possible to run multiple game
worlds on a pool of servers. The physical location of these
servers is of minor importance, they do not have to run in
the same data center. Placing the servers of a single game
world at different locations introduces additional overhead;
however this may be justified by enhanced reliability or maybe

by an improved locality. Even if one whole location should be
disconnected from the network, the servers at other locations
could take over seamlessly and without loss of data.

But it can be observed that players act in groups in most
online games. Since those players can see all players in the
same group on the virtual map, many messages have to be sent
over the server to inform where the other players are. If there
is a border between these players in the map the additional
data has to be exchanged between the two servers, which are
responsible for the different areas.

Many algorithms exist for load balancing in structured P2P
systems [7]–[9]. However, most of these systems are not
applicable for online games. Our approach is based on the
virtual server (VS) approach [7] where multiple partitions of
a Distributed Hash Table’s (DHT) address space are managed
in one node. Thus, one physical node may act as several
independent logical nodes. So each VS will be considered by
the underlying DHT as an independent node.

III. CLUSTER-BASED P2P INFRASTRUCTURE SUPPORT
FOR MMOGS

In our approach, the game world is defined by a map,
which is managed by servers. Each server is responsible
for the region, where the players of its group are located.
Conceptually areas without players don’t need a responsible
server. Non-player characters and other objects with a state can
be handled as players. So the game world is distributed on an
infrastructure of different peers or servers. This infrastructure
is not necessarily located in a single data center. However in
most cases it makes sense to locate the peers that are respon-
sible for adjacent regions in the same network to minimize
delay and costs for internal traffic between the peers. But our
approach could also be used for a super-peer network in a
more distributed setting for more delay-tolerant games.

As in the virtual server (VS) approach multiple peers can
be run on one physical server to better distribute the load.
Since no central server should be used for the whole game, the
movement of players from one cluster to another is done only
by the two participating (virtual) servers. Each VS knows the
coordinates of the players of its own group and the positions of
some players of neighbouring groups which can be seen by the
players of its group. Neighbouring virtual servers periodically
exchange this information, to make sure that the positions of
all players are rendered correctly on the player’s computer.

IV. BUILDING CLUSTERS

For building the clusters, we measure the distance between
the players. Simply measuring each player’s distance to the
centroid of a cluster (cf. Figure 2) leads to a suboptimal
solution since groups may be split in the middle of two virtual
servers. So this approach is not flexible enough to handle large
or deformed clusters.

Figure 3 shows how the mapping of players to groups should
be determined. Players belong to the same group, if they have
a small distance to each other. The form of the group can
be arbitrary, since the distance is not computed to a central

10

point, but to each player’s neighbours. The required minimum
distance to separate two players into different clusters is
variable, so the size of the groups can be changed e.g. when
adding new nodes. Therefore this parameter can also be used
for the load distribution. Players, who have the same distance
to two large groups, can be taken by any of these groups. A
VS is not assigned to a fixed location on the map - as players
move around, the VS assignment follows them.

V. FINDING NEIGHBOURING CLUSTERS

Since there is no central server, each VS must be able
to decide, which other virtual servers of the P2P structure
are direct neighbours on the virtual map. Direct neighbours
of a VS A are those servers, which have players in their
groups, who can move to the players of group A without being
transferred to another group of a VS B before arriving at A.
In many cases these players are also close together, however
there may also bigger areas on the map without any players.
A cluster needs connections to all direct neighbours and all
clusters are connected in one graph.

It is not sufficient to simply use the distance to a neighbour’s
centroid to test if two groups are direct neighbours since the
groups do not necessarily have to be circular. Also groups,
which are far from each other, may be direct neighbours, if
no other group is between them.

So in order to test whether a VS A is a direct neighbour to
B, the canonical approach would be to compare the positions
of all players. For the players, with minimal distance, it must
be tested if no players of another VS C lie between them. The
test for the neighbourship relation can be optimized, as it is
sufficient to test the players that form the convex hulls of the
two groups instead of comparing all players.

VI. LOAD BALANCING USING CLUSTERS

As mentioned before, our proposed system works with a
VS approach. A cluster of players is equivalent to one virtual
server. When the load of a physical server exceeds a threshold,
for example when too many players are in its clusters, the load
is reduced by three mechanisms:

• Moving whole clusters from one node to another.
• Moving one or some players from one cluster to another.
• Splitting a cluster into two parts, and moving one of them

to another physical server.

Fig. 2. Building clusters using the distance from the centroid.

Fig. 3. Building clusters using the distance between players in a group. For
illustration the centroids of the groups are also shown.

Fig. 4. Moving one player from one cluster to another.

A. Moving Clusters

The virtual server approach [7] is based on the idea of
managing multiple partitions of a structured P2P address space
in one node. Thus, one physical node may act as several
independent logical nodes. Each VS will be considered as an
independent node by the underlying structured P2P System.
Within a CAN system, one VS is responsible for a zone of the
address space, whereas the corresponding physical node may
be responsible for several different and independent zones. The
basic advantage of this approach is the simplicity of placing
and transferring virtual servers among arbitrary nodes. This
operation is similar to the standard join or leave procedure
in a structured P2P system. Every participating node manages
many virtual servers so load can be moved between nodes by
moving a whole VS to another node.

B. Moving Players

Another simple operation to balance the load of the clusters
is to move some players from one group to another. Figure 4
shows a player in the middle of two clusters. So depending on
the load of each cluster the player can be moved to the group
with the lower number of players. If some players move away
from a cluster together, also all of them can be moved to the
new cluster together (cf. Figure 5).

C. Splitting Clusters

Additionally, clusters with too many players can be split
and one part can be sent to another server. This is done by

Fig. 5. Moving a part of a group to another cluster.

11

Fig. 6. The virtual server tests six possibilities for splitting a group based
on four points. The two points, which are used as starting points to calculate
the groups in each round, are connected with a line (blue). The perpendicular
bisector of the side drawn in addition isolates the two groups. Each player
belongs to the group of the starting point where he is nearer to. So the
perpendicular bisector of the side splits the two groups, since after this line
the player would be nearer to the other staring point.

first selecting the – usually four – players with minimal and
maximal X- and Y-coordinates in the map.

For every one of the six combinations, two players p and
q are selected and a split is calculated by simply assigning
each other player r either to p’s or q’s group depending on
r’s distance to p and q.

At the end the combination of those two nodes p and q is
chosen, which has the maximal distance between the two new
groups. This is done to minimize the possibility that players
will move from one group to the other in the future. Figure 6
shows as an example all six possibilities to split a group.

Also, adjacent clusters with low numbers of players can be
merged for a lower number of internal messages.

VII. EVALUATION

We focus in this evaluation part, due to space limitations, on
the comparison of the cluster-based approach and the CAN-
based approach with rectangular areas. In [1] we showed
already that a P2P approach for a MMOG is practicable.

A. Traces

We evaluated our approach using a simulation with artifi-
cially generated as well as real traces of user-movement:

• Random walk trace data is a collection of generic data
representing movement of users according to the Random
Walk Mobility Model.

• Random waypoint trace data has been generated using
the Random Waypoint Mobility Model.

• Freewar trace data consists of real player-movements
traced in the online game Freewar [10] over a period of up
to five hours. Approximately 400 players were online in
this period of time, but the number of concurrent players
varies over time since users join or leave the game. Also
the Freewar traces show an extremely uneven distribution
of the players over the world with some hotspots in cities.

B. Comparison

We compare the two approaches based on the following
criteria using the Omnet++ network simulator:

• The number of ForeignPositionChange (FPC) messages,
sent during the simulation. These are sent, whenever a
player moves to the peripheral area of his group and
can be seen by players of a neighbouring group. A FPC
causes the transmission of one message per player and
movement (time step) between the neighbouring virtual
servers. So the number of FPC messages indicates how
well the clusters were separated in the simulation. In a
real game this number of FPC messages is one of the most
important factors, since many FPC messages between the
clusters will delay the response to the users.

• The number of players moved from one VS to another.
The counter of handovers is increased with each handover
of a single player. When parts of a group are transferred
between two virtual servers at once, this counter is
increased by the number of moved players. Besides the
used bandwidth, the transfer of a player may cause a
short delay for the customer. Therefore the number of
handovers should be minimized.

• The number of players moved when complete virtual
servers are moved between two nodes. This is separately
counted in the counter handoversOnMove.

Figure 7 shows the number of handovers of players for a
random walk trace. It shows that the cluster-based approach
performs better than the CAN-based approach with rectan-
gular areas. Additional, less FPC messages are sent in this
simulation (cf. Figure 8). This random walk trace consists of
219,828 movement actions by 500 different players. All graphs
are cumulative, i.e. they show the number of messages since
the start of the simulation run.

We also simulated a scenario with random waypoint trace
data. This trace again consists of 500 players, which move
around in the game world for about five hours. Again, the
cluster-based method performs better than the CAN-based
method. The number of handovers using cluster-based method
is 14,889 compared to 28,198 with the CAN-based method.
The number of FPC messages is 79,492 for the cluster-based
method, compared to 379,392 for the CAN-based method.

In a simulation with the Freewar traces there are less
FPC messages sent by the cluster-based method than by the

12

Handovers, Cluster−based Method

Handovers on VServer move, Cluster−based Method

Handovers, CAN−based Method

Handovers on VServer move, CAN−based Method

Simulation Time [s]
5000 10000 15000

H
an

do
ve

rs
 o

f P
la

ye
rs

0

10000

20000

Fig. 7. Comparison of player handovers from one cluster to another with the
CAN-based rectangular areas approach and the cluster-based approach with
random walk trace data.

ForeignPC, Cluster−based Method

ForeignPC, CAN−based Method

Simulation Time [s]
5000 10000 15000

M
e

s
s

a
g

e
s

0

100000

200000

Fig. 8. The number of FPC messages with the CAN-based rectangular areas
approach and the cluster-based approach with random walk trace data.

CAN-based algorithm (cf. Figure 10). As described in section
VII-B, this is one of the main motivations for the cluser-
based approach in order to improve the interactive experience
for the players. But in the Freewar simulation the cluster-
based method (cf. Figure 9 has a worse performance than the
CAN-based approach with respect to player handovers. The
CAN-based method causes 4,813 handovers and 75,325 FPC
messages. The cluster-based method causes 8,038 handovers
and 48,441 FPC messages.

So whether our CAN-based or the cluster-based approach
is more suitable for a practical game depends on the typical
behavior of the players in the game world and on the costs of
FPC messages versus player handovers.

VIII. CONCLUSIONS

In this paper we use a structured P2P technology for the
organization of the infrastructure and thus for the reduction
of downtimes in MMOGs. By using a cluster-based approach
we split the game world in groups of players and not in
rectangular disjunctive zones. The clusters are distributed
on different nodes of the P2P network. Thus, we get the
possibility to dynamically connect and disconnect machines

Handovers, Cluster−based Method

Handovers on VServer move, Cluster−based Method

Handovers, CAN−based Method

Handovers on VServer move, CAN−based Method

Simulation Time [s]
10000 20000

H
an

do
ve

rs
 o

f P
la

ye
rs

0

2000

4000

6000

8000

Fig. 9. Comparison of player handovers from one cluster to another with the
CAN-based rectangular areas approach and the cluster-based approach with
the Freewar trace data.

F o r e i g n P C , C l u s t e r − b a s e d M e t h o d

F o r e i g n P C , C A N − b a s e d M e t h o d

Simulation Time [s]
10000 20000

M
e

s
s

a
g

e
s

0

20000

40000

60000

Fig. 10. The number of FPC messages with the CAN-based rectangular
areas approach and the cluster-based approach with the Freewar trace data.

to and from the peer-cluster and to load-balance the game
according to the actions of the players. The evaluation shows a
better behavior than the previous CAN-based approach, which
created rectangular areas.

REFERENCES

[1] S. Rieche, K. Wehrle, M. Fouquet, H. Niedermayer, L. Petrak, and
G. Carle, “Peer-to-Peer-based Infrastructure Support for MMOGs,” in
Proc. of CCNC, Las Vegas, 2007.

[2] S. Ratnasamy, P. Francis, et al., “A Scalable Content-Addressable
Network,” in Proc. of the ACM SIGCOMM, San Diego, 2001.

[3] T. Iimura et al., “Zoned federation of game servers: a P2P approach to
scalable MMOGs,” in Proc. of NETGAMES, Portland, 2004.

[4] H. Lu, “Peer-to-Peer Support for Massively Multiplayer Games,” in
Proc. of IEEE INFOCOM, Hong Kong, 2004.

[5] J. Keller and G. Simon, “Solipsis: A Massively Multi-Participant Virtual
World,” in Proc. of PDPTA, Las Vegas, 2003.

[6] C. GauthierDickey, D. Zappala, et al., “Low Latency and Cheat-Proof
Event Ordering for P2P Games,” in Proc. of NOSSDAV, Ireland, 2004.

[7] A. Rao, K. Lakshminarayanan, et al., “Load Balancing in Structured
P2P Systems,” in Proc. of IPTPS, Berkeley, 2003.

[8] D. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms
for Peer-to-Peer Systems,” in Proc. of IPTPS, San Diego, 2004.

[9] J. Byers, J. Considine, et al., “Simple Load Balancing for DHTs,” in
Proc. of IPTPS, Berkeley, 2003.

[10] J. Cernik, “Freewar - MMORPG Browsergame,” www.freewar.de.

13

Consistency Management for Peer-to-Peer-based
Massively Multiuser Virtual Environments

Gregor Schiele∗, Richard Süselbeck∗, Arno Wacker†, Tonio Triebel∗, and Christian Becker∗

∗University of Mannheim
Mannheim, Germany

{gregor.schiele | richard.sueselbeck | tonio.triebel |
christian.becker}@uni-mannheim.de

†University of Duisburg-Essen
Duisburg, Germany

arno.wacker@uni-due.de

Abstract— Massively Multiuser Virtual Environments
(MMVEs) require a seamless and consistent execution.
To provide this, the MMVE must include a sophisticated
consistency management. This management must adapt its
behavior to different activities carried out in the MMVE as well
as different system loads. As an example, a movement activity
must be handled differently to picking up an object. During
times of high system load, a lower level of consistency might be
acceptable if this enables the MMVE to continue operating with
low network delay. Developing such a consistency management
is a complex and time consuming effort. To support MMVE
developers with this task, we propose the creation of a dedicated
consistency management infrastructure. This infrastructure can
be configured by developers for their specific MMVE and makes
it easier to maintain a consistent MMVE state.

I. INTRODUCTION

A Massively Multiuser Virtual Environment (MMVE) al-
lows thousands of users worldwide to interact with each other
in a common environment in real-time. A crucial requirement
for such systems is consistency [1]. As an example, if multiple
users try to pick up the same object at the same time, the
system has to guarantee that only one user actually receives the
object. Otherwise, the users may become irritated by unusual
effects in the environment’s behavior.

At the same time, MMVEs must be highly responsive and
progress seamlessly. Users expect the system to react promptly
to their input and to progress without sudden state changes or
rollbacks. To fulfill these conflicting goals, MMVE developers
have to provide a complex consistency management which al-
lows the MMVE to balance dynamically between consistency,
responsiveness, and seamlessness. This is even more difficult
to achieve in peer-to-peer (P2P) based MMVEs. In such
systems, the MMVE is executed cooperatively on the hosts
of its users and requires no central server. Therefore, there
is no central entity to synchronize the participating entities
and guarantee a consistent environment. To help reduce the
development effort for such MMVEs, we propose the devel-
opment of a novel consistency management infrastructure for
P2P-based MMVEs. This infrastructure allows the application
(i.e. the MMVE using our system) to choose between different
consistency models at runtime.

Our work is executed in the context of the peers@play

project [2]. The goal of the this project is the development of
a comprehensive communication middleware for P2P-based
MMVEs, including support for scalable update propagation,
security, and consistency. In this paper we present the main
design decisions and the architecture of our consistency man-
agement infrastructure. We present its main concepts and show
how they can be used by developers.

The paper is structured as follows. First, we present our
system model and discuss requirements for our consistency
management infrastructure. We provide an overview of related
work and present our approach. Finally, we offer a short
conclusion as well as an outlook on future work.

II. SYSTEM MODEL

Our system model consists of a number of users that want
to use an MMVE, their devices, a communication network
and the MMVE software. Users may be located at any place
in the world. The number of users is a priori undetermined
and can change dynamically. Each user owns a computing
device, which executes the MMVE software and is connected
to a common communication network, e.g., the Internet. We
call such a device a peer. Each user is represented in the
MMVE by a special character, called avatar. To interact with
the MMVE, the user instructs his avatar to perform different
activities, e.g., moving around or picking up an object. In
addition, activities can be initiated by so-called non-player
characters (NPCs). The state of the MMVE is distributed on
the participating peers. If the user executes an activity, the
system creates update events describing the resulting state
changes. It sends these events to all other peers that hold a
copy of this state. We assume the presence of a suitable P2P-
based communication middleware to do so. The middleware
determines the peers to which an event must be sent and
provides all necessary communication services. In the context
of the peers@play project, this functionality is provided by
the peers@play middleware.

III. REQUIREMENTS

A consistency management infrastructure in P2P-based
MMVEs faces a number of requirements not encountered in

14

traditional client/server-systems. In the following we analyze
these requirements in more detail.

1) Flexibility: Users perform a multitude of different activ-
ities in an MMVE, e.g. moving their avatar around, picking
up objects, and interacting with other users or NPCs. The cor-
responding consistency requirements vary widely, depending
on the activity’s type and situation. As an example, the exact
location of a user’s avatar may not be crucial for nearby users,
as long as they do not interact with it. However, once an
interaction between users is initiated, position updates must be
tightly synchronized. On the other hand, users are often willing
to accept different delays for different activities. When a user
picks up an object, he might tolerate several seconds delay.
However, the same user will most likely not tolerate such a
high delay each time he moves his avatar. In summary, both the
required consistency and the maximum acceptable delay vary
between different activities and situations. The consistency
management must be flexible enough to allow the application
to balance both these factors with each other.

2) Adaptability: As the MMVE is executed in a peer-
to-peer system, the available devices and network resources
can vary widely and without warning. If the user decides to
log out of the system and turn off his computer, the system
has to adapt dynamically to loosing this peer. In addition,
user population in a given environment can vary. Thus, the
system has to handle different situations concerning resource
availability and system load. The consistency management
must provide MMVE developers with means to react to high
load situations to make sure that the MMVE maintains a satis-
factory performance. As an example, the system might decide
to lower the consistency requirements for certain activities in
case of a high system load to maintain highest possible system
responsiveness.

3) Extensibility: Different MMVEs may require different
consistency models. To allow the consistency management
infrastructure to stay independent of any specific MMVE, the
infrastructure must enable MMVE developers to extend it with
their own consistency models. As an example, an MMVE
could include the possibility to buy objects from other users
using real currency. To support such trading activities, the
developer wants to include a consistency model that guarantees
transactional properties, such as atomicity. In addition, it
should be robust against attacks from other peers. On the other
hand, a game-themed MMVE requires consistency models that
are optimized towards latency.

IV. RELATED WORK

In the past, a number of different approaches for consistency
in MMVEs have been designed. These approaches can be
divided into two classes, conservative and optimistic. Conser-
vative approaches (e.g. [3],[4]) delay the processing of events
until they have confirmed that it is safe to do so. Using this
approach, if a peer receives an update event, it delays applying
it to its local state until it can guarantee that it will never
receive another update event that should have been applied
previously. Conservative approaches are able to provide a high

level of consistency, e.g. sequential or strong consistency. The
ordering of events will always be the same on each peer. In
addition, the user can be sure, that an activity will never be
undone once it has been executed. However, a consistency
model based on a conservative event synchronization approach
might lead to high latencies, as faster peers could be required
to wait for slower ones. In contrast, optimistic approaches
(e.g. [5],[6]) process the events immediately, and try to correct
possible inconsistencies through techniques such as rollbacks.
They can be used to realize weaker consistency models, e.g.
weak consistency. For the user, this means that an activity
is executed instantly but that he can never be sure if it will
be undone in the future. Hence, consistency models based on
an optimistic event synchronization approach are specifically
well suited for highly interactive activities that can be reversed
without irritating the user too much. None of these isolated
approaches are able to provide the necessary flexibility to
support all different kinds of activities that are experienced
in an MMVE.

For client/server-based MMVEs, several consistency infras-
tructures exist. Lu et al. [7] propose a consistency control
mechanism that allows the application to select between two
different levels of consistency, depending on, e.g., system load.
The FITGap framework [8] allows states in an MMVE to
be associated with different replication models, depending on
their consistency requirements. In contrast to these centralized
approaches, we provide a decentralized P2P infrastructure.
A hybrid architecture was proposed by Pellegrino et al. [9].
It uses a central server to enforce a consistent game state
using an optimistic synchronization protocol with rollbacks,
while all other information is distributed via a P2P approach.
Finally, OpenPING [10] is a middleware for networked games
that includes different consistency models and offers dynamic
adaptation through reflection. However, the supported consis-
tency models are hard coded into the system and cannot be
extended with additional models.

V. OUR APPROACH

Our goal is to provide a consistency management infras-
tructure for P2P-based MMVEs. Our infrastructure should
fulfill the requirements given before, namely: 1. flexibility, 2.
adaptability, and 3. extensibility. In this section we discuss the
main concepts and design decisions underlying our approach.
Subsequently, we describe the architecture of the proposed in-
frastructure and illustrate how the different subsystems interact
with each other using an example activity.

A. Design Rationale

Our system is based on a number of concepts that we
discuss in the following. The main idea is to push application
knowledge about the current situation of the MMVE and
the performed activities into the consistency management to
allow the latter to optimize system operation and minimize
the latency experienced by users. In addition, the application
is enabled to access information about the current situation in

15

the underlying P2P system in order to adapt its requirements
to this situation.

1) Selectable Consistency Model: As discussed before, it
can be insufficient to rely on a single consistency model. In-
stead, different situations and activity types should be handled
with different consistency models. It may be acceptable in
many situations to have loosely synchronized MMVE states
between users that do not interact with each other. A user
passing by another user’s avatar does not need to have a per-
fectly synchronized view of the other user’s current location.
However, once both users interact with each other, e.g., by
picking up the same object, a higher level of consistency is
necessary. To facilitate this, two main approaches are possible.
First, the system can provide a single integrated consistency
model that provides different behaviors for different situations.
Clearly, such a model would be complex and hard to maintain.
The second possibility is to provide multiple independent
consistency models and select the best model at runtime for
each activity. We choose the second approach.

The MMVE can specify for each event which consistency
model is required. This allows it to select the best consistency
model for a given activity in a certain situation. Thus, if no
strong consistency is required, the system can provide higher
interactivity. For events for which strong consistency is manda-
tory, interactivity can be traded for consistency. Choosing
the best model for a given situation requires MMVE-specific
knowledge. Thus, to make consistency models reusable for
different MMVEs, this decision should be separated from the
models and pushed into the MMVE implementation. This
approach fulfills the first requirement (flexibility).

2) Reflection Application Programming Interface (API):
Allowing the application to select a consistency model enables
the application developer to choose the best model for each
activity. However, as described before, this selection should
also depend on the current system load. If the system load is
high, the application should be made aware of this and could
react, e.g., by choosing a more resource efficient model. To
enable this, we propose to offer a reflection API. Using this
API, the application can query the consistency management on
its current state. More precisely, the consistency management
provides information about the currently expected delay for
a given consistency model in a specified part of the MMVE.
This delay depends, e.g., on the current system load in the
corresponding P2P network. Clearly, the API could offer
more detailed low level information, e.g., about the bandwidth
currently available between specific peers. However, to use this
information for selecting a suitable consistency, the applica-
tion would require knowledge about the consistency model’s
implementation, e.g. what messages will be sent to whom. The
reflection API fulfills the second requirement (adaptability).

We deliberately chose to push the decision how to react
to a high system load into the application. Alternatively, this
could be done by the consistency management internally. We
argue, however, that only the application knows if selecting
another consistency model is acceptable for a given activity.
Furthermore, the application has to know which model is used

to appropriately present the result of an activity to the user.
As an example, consider an object that needs be removed
from the user’s inventory due to a rollback. To warn the user,
the application could highlight this object in the graphical
interface.

3) Consistency Plugins: So far, we have addressed the first
two requirements, flexibility and adaptability. Still missing
is to enable MMVE developers to extend the system with
MMVE-specific consistency models – fulfilling the third re-
quirement (extensibility). To do so, we propose to extract the
implementations of consistency models from the infrastructure
and place them into so-called consistency plug-ins. A consis-
tency plug-in encapsulates a protocol implementing a specified
consistency model. If an MMVE developer wants to add an
additional consistency model, he can do so by implementing a
consistency plug-in. He can also select the consistency models
that are suitable for his MMVE and include only the plug-ins
implementing them in the final product. Generic consistency
models can be reused for multiple MMVEs, making devel-
opment more efficient. Note that in contrast to other plug-
in models, our plug-ins are selected at development time.
At runtime, no new plug-ins are added. While offering this
would allow updating the MMVE more easily, the ability to
update code dynamically should be provided for the whole
MMVE software and not for plug-ins, only. Therefore, we
omit dynamic adding and removal of plug-ins to gain better
system performance.

4) Consistency Sessions: All three requirements have now
been addressed by the concepts discussed so far. To help the
consistency management further optimize the MMVE exe-
cution, we provide an additional concept, called consistency
sessions. Consistency sessions allow the application to group
a number of events into a common context. As an example,
the application can group events that are causally dependent
on each other into a session. Thus it is possible to efficiently
perform a partial rollback of these events. In our example of
a user picking up an object, assume that the application uses
a consistency plug-in with optimistic synchronization. Some
time later, the application discovers that it must undo the
pick up event. Normally, this would require to rollback the
entire state of the MMVE. Alternatively, the MMVE could
analyze all causal dependencies between this event and later
ones to select the events to undo. If the application opens a
new session before picking up the object, it can add all events
that depend on the first one into it, and can easily determine
the set of events to undo if necessary.

Note that placing an event into a consistency session does
not mean that it will be delivered only to other members of the
session. Reusing our example of a user fighting an NPC, both
entities share a common session for the fight and movement
events are tightly synchronized between them. If another user
watches the fight, his peer should receive these events, too.
However, he will most probably accept a lower level of
consistency, if this prevents the fight from being slowed down.
Therefore, the MMVE can select the required consistency
model for an event per session. In addition, it can select the

16

consistency model that should be used for delivering the event
to peers that are not included in a session. In our example,
the MMVE would specify the use of strong consistency for
movement events when sending them to entities in the session,
i.e. the fighting user and the NPC, and no consistency when
sending them to other entities, i.e. the observing user.

All events in a session must use the same consistency
plug-in. While this restricts the usage of sessions, it makes
implementing consistency plug-ins much easier. Otherwise, if
a session contains events that use optimistic synchronization,
and the MMVE tries to add an event that uses conservative
synchronization, the plug-in implementing the conservative
synchronization must guarantee that none of the earlier events
in the session will ever have to be undone. Otherwise it would
have to undo its own event, too, breaking its own semantic.
To ensure this, the different consistency plug-ins would have
to interact with each other. If an MMVE requires events in
the same session to use different consistency models, the
MMVE developer could implement a plug-in that integrates
these models and makes sure that mixed sessions are executed
correctly.

An event can be added into several sessions. This may lead
to complex situations that must be handled by the MMVE.
As an example, take an event that is added into a session
with conservative synchronization and into a session with
optimistic synchronization. Later, the system decides to roll
back the events in the second session. However, the first
session cannot be undone, as conservative synchronization
was used. Currently such dependencies are not handled by
the consistency management and must be dissolved by the
MMVE. While we expect such situations to be rare, we plan
to look into this issue more closely in the future.

5) Dynamic Relocation: As another optimization, we pro-
pose to let the consistency management initiate the dynamic
relocation of objects in the MMVE to other peers. A prominent
example for this is a user fighting an NPC in a game-themed
MMVE. The activities of the user and the NPC have to be
carefully synchronized to guarantee a consistent MMVE state
and a satisfactory progression for the user. If the latency be-
tween the user’s peer and the peer executing the NPC is high,
this synchronization may decrease the system responsiveness
unacceptably. The consistency management can detect this
situation and try to optimize the communication delay. To do
so, the management relocates the execution of the NPC to the
user’s peer. Thus, the network delay is reduced to zero and
consistency and responsiveness can be provided efficiently.

As the overhead for relocating objects is usually high, the
system should do so only if the resulting performance gain out-
weighs the initial effort. This depends on several factors, e.g.
the current network delay, or how long the interaction between
the peers will last. If synchronization between them is only
required for a few events, no relocation is performed. On the
other hand, if the peers are involved in a long term interaction,
a relocation should be initiated. To detect such situations, we
rely on the application. It notifies the consistency management
about a potentially long running interaction. The management

can then check if a relocation results in a sufficiently large
performance enhancement and execute it.

B. System Architecture

Our proposed consistency management infrastructure con-
sists of five system components as shown in Figure 1.

O
ptim

izer
O

ptim
izer

Plugin ManagerPlugin Manager

…

Consistency BrokerConsistency Broker

Peers@Play MiddlewarePeers@Play Middleware

Reflection API

MMVE Object ContainerMMVE Object Container

…

Consistency Management Architecture:

Fig. 1. Architecture of the consistency management infrastructure.

The MMVE object container manages MMVE objects. It
allows objects to receive and send update messages if their
state changes. In addition, the computation of an MMVE
object’s behavior can be relocated to another peer. To do
so, it maintains the object’s life cycle, transfers its current
state and hands over control to the moved object. To use the
object container, application developers inherit new objects
from predefined classes.

Located below the object container, the consistency broker
is the central contact point for the MMVE and its objects.
Objects can register for incoming state update events, send up-
date events to other peers, select the consistency models to use
and notify the consistency management about possible MMVE
object relocations. Furthermore, the broker implements the
reflection API. MMVE objects can query the broker for the
expected delay for a given consistency model. To support
both discrete and continuous queries, the API offers both a
synchronous system call as well as an asynchronous callback
interface. To offer current delay information, the broker man-
ages a local history of past interactions and exchanges such
histories with remote brokers. Therefore a broker is able to
provide the application developer with current information,
even if the user’s avatar has recently moved into another area.
As an example, the MMVE might experience high load in a
specific area in the MMVE. When a user moves his avatar from
another low-load area into this one, his consistency broker
exchanges historical data with others in the area and learns
of this situation. It can notify the application of this, enabling
the latter to initiate an appropriate reaction, e.g. requesting
a lower level of synchronization for its activities. Finally,
the consistency broker is responsible for forwarding update
events between MMVE objects and plug-ins, and creates and
maintains consistency sessions.

Consistency plug-ins are maintained by the Plug-in Man-
ager. It offers an execution environment for plug-ins, main-

17

tains a list of installed plug-ins and mediates events be-
tween the consistency broker and the plug-ins. Each plug-
in implements a consistency protocol, realizing a defined
consistency model. To communicate with remote plug-ins,
they interact with the peers@play communication middleware
(see Section II), which determines the correct peers to send
events to, etc.

Finally, the Optimizer adapts the system behavior to provide
lower delays for executing interactions. It spans all system
layers and combines information from different system compo-
nents. Currently, it is used to initiate the relocation of MMVE
objects. To do so, it accesses the communication middleware
to learn about the current system state, e.g. network delay
and bandwidth. To learn about long running interactions, it
interacts with the consistency broker. If the Optimizer decides
to relocate a MMVE object it contacts its local MMVE object
container and initiates relocation. In the future, the Optimizer
may contain additional optimization algorithms.

C. Example

After discussing the design rationale of our infrastructure
and presenting its architecture, we give an example of an
activity that is executed within our system. In this example,
two users u1 and u2 attempt to pick up an object o at roughly
the same time. The system needs to ensure that only one of
the users receives the object.

First, the application selects as suitable consistency model.
It decides that picking up an object is an event for which
a strong consistency model is appropriate. The application
queries the broker if the system is currently able to provide
strong consistency, while maintaining adequate network de-
lays. For the sake of simplicity, we assume that the application
is satisfied with the current system state and a strong consis-
tency model can be used. In addition to selecting a consistency
model, the application also needs to determine if the event
should be part of a consistency session. Since the application
decided to use strong consistency, the ability to perform a
partial rollback is not needed. Thus, the application decides
not to include the event in a session.

Next, the application contacts the consistency broker and in-
structs it to enforce strong consistency by using the respective
plug-in. It also hands the broker a set of context variables that
are used by the strong consistency plug-in. In this example,
the context contains an area of effect for the pick up event.
This area determines all locations from which the object can
be picked up. It is used later by the plug-in to determine which
peers to synchronize with.

After being called by the broker, the plug-in determines all
users and NPCs that are near o and thus would be able to
pick it up. Here, this includes only u2. Note that the plug-
in does not know that u2 has actually just tried to pick up
o. It is only aware that she is in a position to do so, and
therefore needs to be considered. The plug-in now contacts
all affected users and NPCs (again only u2) and notifies them
that u1 wants to pick up o at this time. In order to this, it
uses the peers@play communication middleware. When the

corresponding consistency plug-in at u2’s peer receives this
request, it checks if it has already taken o or is in the process
of doing so. Here, we assume that u2 actually tried to pick up
o a short while after u1. Therefore u1 is entitled to receive the
object. The plug-in then passes this information back to the
broker via the plug-in manager, which informs the application
of the success of the event. During this entire process, u1 has to
wait for the confirmation of the consistency management. Only
after the confirmation arrives, does the item actually appear in
his inventory. The entire process looks almost identical for u2,
with the exception that the consistency management will report
that o has already been taken. Thus, u2 receives a message,
that the object is no longer available.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a consistency manage-
ment infrastructure and presented its main concepts. We also
gave an overview on the architecture of our infrastructure.
Currently we are implementing the discussed concepts and
components, as well as integrating a number of different
consistency models. So far, our infrastructure offers no support
for handling dependencies between different consistency plug-
ins. As discussed before, this might be necessary if events are
added into multiple consistency sessions. In future work we
plan to extend our infrastructure with suitable coordination
mechanisms for this.

REFERENCES

[1] G. Schiele, R. Sueselbeck, A. Wacker, J. Haehner, C. Becker, and
T. Weis, “Requirements of peer-to-peer-based massively multiplayer
online gaming,” in Proceedings of the Seventh International Workshop
on Global and Peer-to-Peer Computing, 2007.

[2] University of Mannheim, Duisburg-Essen and Lebniz University of
Hannover, “peers@play homepage,” published on the WWW at
http://www.peers-at-play.org/, 2008.

[3] N. E. Baughman and B. N. Levine, “Cheat-proof playout for centralized
and distributed online games,” in Proceedings of the Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM-01). Los Alamitos, CA: IEEE Computer Society, Apr.
22–26 2001, pp. 104–113.

[4] J. Steinman, “Scalable parallel and distributed military simulations using
the speedes framework,” NASA, Tech. Rep., 1995.

[5] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg, “Local-lag and timewarp:
Providing consistency for replicated continuous applications,” IEEE
Transactions on Multimedia, vol. 6, pp. 47–57, 2004.

[6] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin, “An efficient syn-
chronization mechanism for mirrored game architectures,” in NetGames
’02: Proceedings of the 1st workshop on Network and system support
for games. New York, NY, USA: ACM, 2002, pp. 67–73.

[7] T.-C. Lu, M.-T. Lin, and C. Lee, “Control mechanisms for large-scale
virtual environments,” Journal of Visual Languages and Computing,
vol. 10, pp. 69–85, 1999.

[8] A.-G. Bosser, Technologies for E-Learning and Digital Entertainment.
Springer Berlin / Heidelberg, 2006, ch. A Framework to Help Designing
Innovative Massively Multiplayer Online Games Interactions, pp. 519 –
528.

[9] J. D. Pellegrino and C. Dovrolis, “Bandwidth requirement and state
consistency in three multiplayer game architectures,” in Proceedings of
the 2nd ACM SIGCOMM workshop on Network and system support for
games (NetGames’03), New York, NY, USA, 2003, pp. 52–59.

[10] P. Okanda and G. Blair, “OpenPING: a reflective middleware for the
construction of adaptive networked game applications,” in NetGames
’04: Proceedings of 3rd ACM SIGCOMM workshop on Network and
system support for games. New York, NY, USA: ACM, 2004, pp.
111–115.

18

Data Aggregation Method for View Range
Computation on P2P-based VCS

Ryo Nishide, Dai Ito, Masaaki Ohnishi, Shinichi Ueshima
Graduate School of Informatics, Kansai University
2-1-1 Ryozenji, Takatsuki, Osaka, 569-1095, Japan

Email: {fa4d003, fb6m124, fa4d001, ueshima}@edu.kansai-u.ac.jp

Abstract—Efficient data transfer is an essential topic to achieve
scalability and data consistency to maintain the system in P2P-
based Virtual Collaborative Space (VCS). In this VCS, each
terminal requires the surrounding spatial data of its avatars
for visualization of space. The congestion of avatars is then
a serious problem when each terminal collects spatial data
from the surrounding avatars. Thus, it requires a method to
transfer data without delay and to relieve the load for terminals
and networks. This paper proposes a data aggregation method
on a P2P-based scalable geographic network to transfer the
data efficiently at a congested area of avatars as nodes on a
geographic network. The authors apply Skip Delaunay Network
(SDN) generated from a hybrid structure of logical SkipNet and
geographical Delaunay Network for remote access, and perform
geocast for sending messages to a particular point or range on
a plane. The authors conceive that multiple data paths to a
common destination node construct a tree structure, in which
the destination node is the root node, and nodes along the way
are the internal nodes of the tree. Using the internal nodes for
data aggregation, the proposed method can reduce frequent data
transfer at a geographically crowded area of nodes. The authors
show that data aggregation method on SDN can achieve both
the long range contacts and reduction of CPU and network loads
regardless of node distribution. The efficiency has been evaluated
from the context of node congestion by examining the number
of transferred data for methods with and without aggregation.

I. I NTRODUCTION

Virtual Collaborative Space System (VCS System), a system
which uses the location and performs interaction on virtual
space is gaining focus recently [1], [2]. It is a system with
a set of interacting entities as avatars in virtual space. Users
control these avatars from their terminals to walk-through in
space, and perform interactions by sending messages to other
users in virtual space.

Most of these VCS systems are built in C/S model [3], [4],
which lacks scalability such as excessive cost for servers due to
the increase of users. To overcome this problem, some efforts
have been recently made for generating VCS systems on P2P
setting [5–8], focusing on the characteristics as follows:

• Network scalability with respect to number of users
• System scalability according to spatial extension
• Distributive data management by space partitioning, and

allotment of partitioned space to nodes

VCS systems have the same characteristic that each user
requires only the local data of the surroundings. Thus, it is
necessary to aggregate the surrounding data, and disseminate
the data to a particular location or range on space. It is

also necessary to cope with network congestion on P2P
environment, by reducing inefficient data transfer for multihop
communication.

We employ a well-known Delaunay diagram in computa-
tional geometry based on the adjacency of locations of avatars
as nodes. We have proposed an autonomous and distributive
generation algorithm of P2P Delaunay Network, which nodes
generate such overlaid network cooperatively over 2D plane
in P2P settings [9]. We have also proposed a Skip Delaunay
Network (SDN) for reducing the number of hops for data
transfer to remote nodes, using the hybrid structure of logical
Skipnet and a geographical Delaunay network, and shown
method to perform geocast to determine the directions to send
data on geographical network [10].

If nodes within the view range increase, such problems
as following become crucial in terms of network scalability,
which requires a scheme to transfer data efficiently.

• Data Transfer Delay: Increase of number of hops
• Network Congestion: Data packet concentration to a

specific peer
Furthermore, even though SDN can reduce the delay for data
transfer, it cannot perform network load balancing for data
packet concentration at a crowded area of nodes.

In this paper, we show data aggregation tree on SDN, which
uses the scheme to temporarily cache multiple data and send
them to the successor node at once. The paths for multiple data
sent to the same destination node generate a tree structure, in
which the root node is the destination, and each internal node
of the tree is a node to cache multiple data and send them at
once.

Using this scheme, we can reduce the frequency of data
transfers between nodes, and cope with hotspots of nodes
receiving data packets frequently. Our method employs advan-
tageous features from both the SDN and aggregation method,
by reducing the data transfer delay with SDN and handling
network congestion with aggregation tree.

II. FEATURES OFPROPOSEDMETHOD

A. Generation of View

GUI Construction:In Virtual Collaborative Space, user’s
terminal requires the surrounding spatial data of its avatar
to generate a view range for visualization of space. Thus, to
construct a GUI, each user’s terminal requires the spatial data
managed by other users.

19

Fig. 1. a0’s Data Dissemination and Aggregation for Constructing a View

To gather data from terminals of the surrounding avatars, it
is necessary for other terminals to send their(location, state)
data. On the other hand, it is also required to receive these
data from the terminals of nearby avatars. Our model enables
each terminal to generate a view with a certain ranger by
disseminating and aggregating these data to terminals of its
surrounding avatars autonomously and distributively. Here, we
assume the size and shape of view range is equal for every
user’s terminal.

A particular user’s terminal which is controlling avatarai

generates the view rangeR(ai), and sends data to every
terminal which has avatar withinR(ai). The number of
terminals to send data depends on the density of avatars within
the view range. Note that two particular avatarsai, aj mutually
within their own view range require data of each other.

Fig. 1 shows an example for generating a view of avatar
a0. It shows thata0 requires data ofa1 within the view
rangeR(a0). On the other hand,a1 requiresa0’s data in the
same way. Assuming that radiusr of view range is the same
with every avatar,a0’s terminal disseminates its data to its
surrounding avatar’s terminals, and aggregates other terminals’
data within the view rangeR(a0) including a1’s data. In this
way, the necessary spatial data are sent to all terminals with
avatar in the view range.

Delaunay Network:Delaunay Network provides locality
connections only with its adjacent neighbors, which can
efficiently gather the surrounding spatial data required for
generating a view. We use the locations of avatars controlled
by users’ terminals as nodes’ location on Delaunay Network.
Moreover, by assigning Voronoi Regions as the managing
territories of space to the entire nodes, the entire data within
the view range can be queried as the Voronoi regions of entire
nodes cover the entire plane.

B. SDN as a Scalable Network

Geocasting within View Range on SDN
Delaunay Network requires a mechanism to access to re-

mote nodes in case when node congestions occurred within the
view range. Else, it can cause data transfer delay depending on
the number of nodes within the view range. Thus, connections
with remote nodes are necessary to send data within the
congested area of nodes.

We use SDN, which is a hybrid structure of SkipNet and
geographical Delaunay Network on a plane [10], for gener-

(a) n0: Geocast inR(n0) (b) n8: Geocast inR8

Fig. 2. Geometric Routing to Nodes within View Range on SDN

ating connections with remote nodes. Moreover, we perform
geocast on SDN to send data to every node within the view
range. Using SDN, we can build long range contacts (LRC)
to send data to remote nodes, to deal with data transfer delay.

To perform geocast, each node generates Voronoi Diagram
virtually with all of the neighbor nodes throughout the entire
level of SDN. Using this Virtual Voronoi Diagram, we can
determine the neighbor nodes to send data by extracting the
intersection areaAi of query range and neighbor nodes’
Virtual Voronoi Region. We send the data to every node, whose
Virtual Voronoi Region intersects with the query range.

When data are sent to all neighbor nodes within view
range, some nodes might receive the same data from multiple
neighbor nodes. To avoid this, we set the direction to send
data by replacing the query range with intersection areaAi,
and send data with query rangeAi to neighbor nodes. Thus,
we can send data to a specific direction, and each query range
data will be received only once.

We use the following notations to describe our method:

• NN : neighbor node set of the entire level of SDN

• V.V or(ni): Virtual Voronoi Region ofni

• q(ni): query range ofni

Using these notations, we derive the following formula to
determine the neighbor nodesNNsend(ni) to send data.

NNsend(ni) = {nj ∈ NN |V.V or(nj) ∩ q(ni) ̸= ϕ} (1)

Instead of sending the view range to neighbor nodenj , we
only send the intersection areaq(nj) = {V.V or(nj)∩ q(ni)}
to nodenj . Note that this intersection area is used to set the
direction to send data.

Here, we describe the method to perform geocast on SDN,
to assure thatn0’s data can be reached to every node within
a certain view ranger, using Fig. 2. Initially,n0 generates
V.V or with neighbor nodes of every level of SDN (blue dots
on Fig. 2 left). In the figure,n1, n2, n3, n4, n6, n8, n10,
n13, n16 are the neighbors ofn0. Among these neighbors,n0

sends data to neighborsni with intersectingV.V or(ni) and
view rangeR(n0), which refers to all the neighbors ofn0

exceptn13 and n16. The data includes the intersection area
dataRi on the figure.

Then, nodeni which has receivedRi data verifies their
intersections with their neighbor’sV.V or and Ri, and sends

20

Fig. 3. Node Congestions and Number of Neighbors (Color = Level)

intersection data to its neighbors in the same way. Fig. 2 right
showsn8, which has receivedR8 data fromn0, sends the
intersection data of neighbor’sV.V or and R8 to neighbor
nodesn7 andn9, respectively. Using this routing scheme, the
data can be delivered to the entire nodes within the circular
range with radiusr.

This method for disseminating data within view range has
the following characteristics:

• Data can be sent to every node with an intersection of its
Voronoi region and view range

• Data can reach the destination node(s) regardless of the
location and shape of view range

Congested Nodes on SDN
In the previous section, we have shown that we can expect

an efficient routing scheme for disseminating data to remote
nodes by using SDN. We believe that this scheme can provide
efficient routing for nodes within the view range. In this
section, we describe how to solve the remaining problems for
SDN when data concentrate to nodes in the crowded area.

In SDN, the network load can be balanced if nodes have
equal size ranges and are uniformly distributed on a plane.
However, when nodes are skewed at a particular location on
space, the network load can be congested at the skewed loca-
tion of nodes on space. Specifically, SDN has a characteristic
that a particular node possesses many connections if a large
number of nodes are within the view range, which increases
the risk for data packets to be received from multiple nodes
frequently (Fig. 3). Therefore, to deal with such problems, it
is necessary to consider an efficient data transfer scheme to
avoid network congestion.

When sending data packets, it is obvious that they should
be sent with long messages up to the limit of window size,
instead of sending numerous short message packets frequently.
Otherwise, frequent transfers of short message packets can
waste the bandwidth, as several packets may get lost due to
buffer overflow, which requires the packets to be sent again.
Resultantly, this increases the risk for massive packets to flow
in the network, which causes network congestion.

Thus, in order to avoid such situations, we consider a model
to cache multiple received data and send to the following

Fig. 4. Aggregation Tree Model for Data Transfer

neighbor nodes at once. In this way, we can save bandwidth
by reducing frequent transfer of data packets, and reduce the
number of data packets in the entire network.

C. Data Aggregation Method

In the previous section, we have shown method for nodes to
send data using geocast, and explained that skewed distribution
of nodes can cause network congestion when performing
geocast on SDN. Here, we provide solution to reduce network
load and frequent data transfer, using data aggregation tree to
transfer data efficiently.

Data aggregation tree is a tree structure built from the paths
of multiple data sent to a common destination node. This
tree is generated passively from the paths of data sent by
geocasting. The node which constructs the view range is the
root node of the tree, and each node generates its unique data
aggregation tree. Data are sent to its parent node of the tree
recursively, until the data reach the destination node.

When data are sent to their parent node, multiple data can
intersect at a particular internal node of the tree. From this
internal node, the data take the common path to the destination
node. We consider that instead of sending the data individually,
multiple data should be cached and sent together as a single
data to the successor node.

Here, we provide an example of data aggregation tree of
noden0 (Fig. 4). Letni, nj be source nodes to send datadi,
dj to destination noden0 respectively. The paths fordi, dj

have either of the following characteristics:

• di anddj intersect at a particular nodenk, and takes the
same path ton0

• di anddj intersect atn0

In this tree,n0 is the root node and intersecting nodenk is the
internal node. To reduce frequent data transfer,di anddj are
packaged as a single data atnk and sent ton0 accordingly.

We believe that data aggregation tree can considerably
reduce the data transfer frequency for these nodes. Moreover,
the total data transfer frequency can stay low throughout the
entire nodes.

21

Fig. 5. Data Structure of our Method

III. PROPOSEDMETHOD AND ITS DATA STRUCTURES

Here, we describe the proposed method for generating an
aggregation tree. Figure 5 shows the data structure of our
method and roles for each list. Initially, each node has three
lists, namely Receive List (Rec List), Neighbor Node List (NN
List), and Computation List (Comp List).

The queries include [Node ID, Packet ID, Location, Query
Range, Time]. All the queries received from other nodes are
stored in Rec List.

The details of the processes in Fig. 5 are as follows:

1) When Comp List is empty, move all the queries from
Rec List to Comp List, and clear Rec List

2) Extract each neighbor nodeni from NN List
3) Obtain the intersection area with each query range in

Comp List andV.V or(ni). Generate Send List(ni) and
store intersection area for each query

4) When every query in Comp List is processed, send Send
List(ni) to nodeni

5) Perform step 2) with next neighbor in NN List. Clear
the Comp List when every node in NN List is processed

Get Queries from Rec List
In order to determine the next destination node to send

range query, we obtain the intersection area of query range
andV.V or of neighbor nodes. We do not use queries in Rec
List to obtain the intersection area, as this process should not
be interfered by the process of adding queries in Rec List. That
is, each node in NN List in turns obtains an intersection area
with each query in Comp List, hence the new added query
might not be processed by some neighbor nodes, which have
already completed their intersection area computation.

Therefore, we use Rec List to store queries received from
other nodes, and Comp List to get queries from Rec List.
In detail, the Comp List pulls out a set of queries from Rec
List and stores in Comp List, when the Comp List is empty.
Moreover, the Comp List clears the list every time when the
processes have been completed throughout all neighbor nodes.

Selecting Neighbor Nodes to Send Queries
Here, we describe the process to choose the neighbor node

to send the queries in Comp List. To choose the neighbor node,
the following information is required.

Fig. 6. Data Aggregation and Transfer Method

• V.V or of every neighbor node (in NN List)
• Query range from predecessor node (in Comp List)

To choose the destination node, we obtain the intersecting
area of query range andV.V or for every neighbor node in
NN List. Every neighbor node with an intersection area will
be the target node to send the query. Instead of sending the
view range as query range, we send the intersection area as
query range to successor neighbor nodes.

Figure 6 (a) illustratesq1 andq2’s query ranges intersecting
with {V.V or(n3), V.V or(n4), V.V or(n5)}. Thus, the next
destination nodes forq1 and q2 will be n3, n4, and n5.
Consequently, the next destination nodes (ni) will be sent with
the intersection area ofV.V or(ni) andq1, q2 respectively.

Send List for Packaging and Sending Queries
When sending packets to a particular neighbor node, it

is inefficient to send range query packets one after another.
Therefore, we generate a Send List to store every query with
an intersection area of neighbor node, and send the queries
together to the neighbor node.

The Send List is generated separately for each neighbor
node, and each query in Comp List is classified to the Send
List of relevant neighbor nodes. To send queries in Send List
together, we generate a package with all queries in Send List,
and send it to the neighbor node. In this way, we can send
multiple queries together to neighbor nodes, avoiding frequent
data transfer.

Figure 6 (b) shows an example for generating Send List
of n3, and utilizing it for packaging multiple queries to send
to neighbor noden3. Multiple queriesq1, q2, q3, ..., qi are
stored in Comp List. The Send List forn3 storesq1 andq2 as
these two queries are to be sent ton3. Finally, q1 and q2 are
packaged and sent ton3.

IV. EVALUATION

In this section, we verify the efficiency of our data aggre-
gation method from the effects on node congestion within the
view range. We have obtained the number of received queries
according to the increase of nodes within the view range.

22

Fig. 7. Node Density and Number of Received Data

In our method, each node has a view range, and multicasts
data within the view range. We fix the shape and size of
view range for every node, and examine how the node density
affects the CPU load for method with/without aggregation.
Settings for Simulation

Under the following settings, we have obtained the number
of received data for with/without the data aggregation on SDN.

• View range: Nodes have circular view range
• Node density: Nodes increase within the view range
• Data transfer: Nodes send each data per step
• Aggregation: Package data and send to neighbor nodes
• No aggregation: Just cast data to neighbor nodes

CPU Load w.r.t. Node Congestion
We compare the method with/without aggregation in terms

of congestion of nodes within the view range. In fig. 7, we
examine the number of received data w.r.t. the number of
nodes within the view range.

The figure shows that number of received data without the
aggregation method rises steeply according to nodes increase.
From the result, we consider that few increase of nodes
can extremely increase the number of received data, as the
data sent from a single node can be received from multiple
neighbor nodes. On the other hand, the number of received
data for aggregation method rises slightly, as multiple data
are packed together and sent to the successor nodes. Therefore,
the number of received data for aggregation method stays low
even in node congestion.

We have performed step-by-step data transfer in this simu-
lation. If we apply our method in real environment, we need to
consider the CPU performance and data transfer speed. Thus,
it is important to determine an appropriate interval time length
for aggregating data, while considering the required threshold
of time length for visualization and interaction in space.

V. RELATED WORKS

To obtain scalability in respect to number of users, a
method to transfer spatial data efficiently is an important issue.
Efficient routing mechanism and a scheme to reduce frequent
data transfer are some required issues for achieving scalability.

For an efficient routing mechanism, some works on geo-
cast have been proposed. [12] proposes a geocast routing
mechanism based on node’s location to send messages to

nodes within a specified geographical area on mobile ad-hoc
networks. [10] proposes method to construct a probabilistic
link structure with remote nodes on P2P Delaunay Network,
and applies geocast routing mechanism for sending messages
to a specific geographical point or range on space.

For reduction of data transfer frequency, a method has also
been proposed to construct a tree for aggregating and sending
multiple data to its connected node. [13] proposes directed
diffusion scheme for data dissemination, to intentionally ag-
gregate multiple data at internal nodes of the tree. On the
contrary, our method generates an aggregation tree passively
from the path of multiple data sent using geocast.

In our proposed method, we can achieve efficient data
transfer from both advantages of an efficient geocast routing
mechanism and data aggregation method.

VI. CONCLUSION

We have proposed method to utilize Data Aggregation Tree
for efficient data transfer, and examined that our method
works efficiently on SDN through numerical simulation. Fur-
thermore, with Data Aggregation Tree and geometric routing
on SDN, we can perform geocast efficiently while avoiding
network congestion.

For our plans in future works, additional evaluations are
required with/without aggregation method, such as verifying
the CPU and network load, acquiring the appropriate interval
time lengths for aggregating data, and examining the amount
of data loss due to transfer frequency of packets.

REFERENCES

[1] B. Damer, “Meeting in the ether,” ACM interactions, Vol.14 No.5, pp.16–
18, 2007.

[2] M. Macedonia, “Generation 3D: Living in Virtual Worlds,” IEEE Com-
puter, Vol.40 No.10, pp. 99–101, 2007.

[3] Second Life, http://secondlife.com/
[4] Active Worlds, http://www.activeworlds.com/
[5] S.-Y. Hu, J.-F. Chen and T.-H. Chen, “VON: A scalable peer-to-peer

network for virtual environments,” IEEE Network, Vol.20 No.4, pp.22–
31, 2006.

[6] B. Knutsson, H. Lu, W. Xu, B. Hopkins, “Peer-to-Peer Support for
Massively Multiplayer Games,” In Joint Conf. IEEE Computer and
Communications Societies, Vol.1, pp.107, 2004.

[7] Y. Kawahara, H. Morikawa, T. Aoyama, “A Peer-to-Peer Message Ex-
change Scheme for Large Scale Networked Virtual Environments,” IEEE
ICCS, pp. 957-961, 2002.

[8] P. Morillo, J.M. Ordũna, M. Ferńandez, J. Duato, “Improving the Per-
formance of Distributed Virtual Environment Systems,” IEEE Trans. on
Parallel and Distributed Systems, Vol.16 No.7, pp. 637-649, 2005.

[9] M. Ohnishi, R. Nishide, S. Ueshima, “Incremental construction of delau-
nay overlaid network for virtual collaborative space,” 3-rd Proc. Conf.
on Creating, Connecting and Collaborating through Computing (C5’05),
(IEEE CS Press), pp.77–84, 2005.

[10] S. Tsuboi, T. Oku, M. Ohnishi, S. Ueshima, “Generating Skip Delaunay
Network for P2P Geocasting,” 3-rd Proc. Conf. on Creating, Connecting
and Collaborating through Computing (C5’08), (IEEE CS Press), 2008.

[11] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, A. Wolman, “SkipNet:
A Scalable Overlay Network with Practical Locality Properties”, 4th
USENIX Symp. on Internet Technologies and Systems (USITS ’03),
Vol.4, p.9, 2003.

[12] Y. B. Ko, N. H. Vaidya, “Flooding-based geocasting protocols for
mobile ad hoc networks”, Mobile Networks and Applications, Vol.7 No.6,
pp.471–480, 2002.

[13] C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heidemann, “Impact of
network density on data aggregation in wireless sensor networks”, 22nd
Int’l IEEE Conf on Distributed Computing Systems, pp.457–458, 2002.

23

`

An Implementation of a First-Person Game on a Hybrid Network
Anthony Steed*, Bingshu Zhu

Department of Computer Science, University College London

ABSTRACT
The majority of current networked virtual environments and
networked games use a client-server model of networking. This
makes synchronization of the environment simple, but it adds
additional latency between any two clients. Peer-to-peer
networking is a common alternative, but whilst these systems
have potentially lower latency, they are more difficult to scale and
lack a single point of synchronization.

In this paper we demonstrate an implementation of a form of
hybrid networking, where clients communicate important state to
a server, but communicate rapidly changing state peer-to-peer. By
using the frontier set concept, we can make this scale since we
ensure that only relevant position updates are sent peer-to-peer.
The implementation is done as a modification to the game Quake
3 Arena. We show that the latency between clients is indeed
reduced significantly for position events, and that this is achieved
at a relatively small increase in network traffic.

CR Categories: C.2.4 [Computer Communication Networks]:
Distributed Systems; I.3.2 [Computer Graphics]: Graphics
Systems

Keywords: frontier sets, latency, synchronization, network
scalability, networked virtual environments.

1 INTRODUCTION
Networked virtual environments (NVEs) pose a number of
challenges to system designers [22]. The system designer must
balance the requirement of ensuring consistent behavior of objects
across a possibly widely distributed set of communicating clients,
with the requirement of ensuring that any individual client has a
continuous and usable experience. This is especially true in
networked games such as first person games, where complete
consistency between clients is unachievable across wide areas at a
rate acceptable to the frenetic pace of the game. Thus in this type
of games, the clients commonly run in a partially desynchronized
manner. The main decision that a system designer has to make is
to choose between a client-server system where synchronization is
relatively easily determined by the server but where all messages
must go via the server, and peer-to-peer systems where the
synchronization problem is exacerbated, but the latency of any
particular event is minimized.

 In this paper we investigate a hybrid networking model, where
communication is a mix of peer-to-peer and client-server, for the
game Quake 3 Arena. Normally peer-to-peer communication in
such a situation would be prohibitively expensive, however we
use frontier sets to partition the world so each peer in the network

can independently decide whether to send messages to other peers
and thus each peer only communicates their position information
with others peers that are likely to be visible. Bypassing the server
in this way allows minimal latency between generation and
rendering of positions of players in the game.

 Reducing some of the sources of latency should provide a
better experience for the players. This is because it can remove
some discrepancies due to motion extrapolation and rollback that
occur in such games where the server determines critical events
and communicate these events to clients that are simply
extrapolating a previous state. We show that hybrid networking is
feasible in a real game scenario, and that, in packet count and
throughput terms, it has a relatively small impact on the network
load.

2 RELATED WORK
Today’s NVEs have emerged from technologies developed for
military simulators. Two dominant architectures have been
pursued: peer-to-peer systems and client-server systems. SIMNET
was an early example of a peer-to-peer system where each client
simply broadcast information about its state on the network [18].
Such systems require a lot of bandwidth to cope with the volume
of messages. There is also a general problem in ensuring
consistency and security, problems acknowledged in the early
MiMaze system [7].

The main alternative to peer-to-peer systems is client-server
systems. In this type of system all clients connect to a server and
that server is responsible for computing the state of the game and
distributing it to all the clients. Consistency is easily managed
since there is one canonical copy of the game state on the server.
However a server introduces extra latency because any update to
the game state needs to be relayed by the servers. The issue of
latency is very important for real-time games, especially first-
person shooter games which have become very popular in the last
few years [2][10].

2.1 Partitioning
In order to have environments that scale to large numbers of users
one common approach is to partition the world and only relay a
subset of all events and state to each client [20].

One of the first systems to employ a partitioning scheme was
the NPSNET system [16]. NPSNET divides the virtual world into
fixed sized hexagonal cells. Each participant sends information
(e.g. location updates) to their current local cell but can choose to
receive information from potentially many cells that fall within
their area of interest. The Spline system [26] divides a virtual
world into arbitrary-shaped locales that are stitched together using
portals. Each locale defines its own co-ordinate system and
participants receive information from their current locale and its
immediate neighbors. The ability to use variable-sized locales
provides additional flexibility in coping with less predictable
entities and is more appropriate for indoor environments.

Many games are built with environment models that have a lot
of occlusion between models. One technique that is often used in
such games is potentially visible sets (PVS) [27]. A PVS can be
used to exclude a pair of entities from consideration for simulation

*A.Steed@cs.ucl.ac.uk

24

purposes because they are not mutually visible. However this
visibility must be evaluated every time the entities concerned
move. The RING system exploits a PVS data structure to increase
the scalability of a client-server virtual environment [8]. In the
RING system, a server culls messages if it knows that a client
can’t see the effect of the message.

Other systems propose to partition groups dynamically,
depending on local awareness and neighborhood relationships
[14][15][19]. These and similar schemes could provide for highly-
scalable peer-to-peer networking, but have not as yet been used in
practical implementations.

2.2 Latency
Latency in NVEs arises because of the physical transmission of
the data and the cumulative processing latency of sender, receiver
and router processes. Latency immediately induces inconsistency
because an individual client “sees” the behavior of all other clients
after a delay. Thus the player reacts to state when at the remote
site that state may have already changed. A typical way this
manifests in online FPS games is that the client sees and shoots at
a target, but that target has moved. The role of the server is to be
neutral and resolve such inconsistencies in as fair a way as
possible. However, introducing a server causes slightly different
problems, where players might think they have dodged a bullet,
but because the server “sees” their behavior slightly delayed they
subsequently get informed that they were shot in the past. This
may require the client to roll-back to a previous state. A thorough
survey of latency including a discussion of the inconsistencies that
arise and strategies to combat them is given in [5][6].

2.3 Hybrid Networking
Hybrid networking is a term that is commonly used to refer to
services that combine client-server and peer-to-peer
communications. For example, Chen & Muntz propose a peer-
clustering scheme that distributes some server responsibilities
amongst peers [4]. In that scheme servers are necessary to support
critical tasks, but peer clusters take over the handling of local
interactions.

Our use of hybrid networking embodies a similar principle of
delegating some responsibilities to the clients, but the goal is
simpler: to reduce the latency with which certain events are seen
by the clients.

2.4 Frontier Sets
The frontier set was introduced by Steed & Angus [24][25]. It is a
concrete example of a more general class of algorithm called
update-free regions [9][17]. These algorithms exploit the fact that
if any two players know instantaneously where the other is, they
might both be independently able to establish that they do not
need to communicate until they leave an area. A simple example
is two players on either side of a long wall. Until one or the other
reaches the end of the wall, they can’t possibly see their
counterpart: for mutual visibility to be possible, one of them must
round the wall.

A frontier set reifies this concept in the specific situation of a
world where there is a visibility relationship such as a PVS [27]. If
the environment is divided in to regions of space (or cells) then
for any cell, it will be possible to identify openings (or portals)
through which other cells can be seen. For any cell, it is possible
to explicitly compute which other cells are visible from that cell,
because if a cell is visible then there must be a line of sight
through all the portals between them.

A single frontier is defined relative to pairs of cells in that
subdivision. Given two cells A and B, a frontier comprises two
sets of cells FAB and FBA such that no cell in FAB is visible to a cell
in FBA and vice-versa. Figure 1 gives an example of a frontier.

The complete set of frontiers for a whole environment will be
referred to as a frontier set.

2.4.1 Example Usage
Consider two users moving around the environment depicted in
Figure 1a. If Anne is in cell A, and Bob is in cell I at time t0 then a
frontier can be established, FAI = {A,B,C,F}, FIA = {G,H,I} as
shown in Figure 1a. If Anne remains in the set of cells FAI and
Bob remains in the set of cells FIA then they can never see each
other. If this were a networked virtual environment this would
mean that if Anne and Bob both exchanged location information
at t0 they would not have to send any further updates.

a. b.

c. d.

A B C

D E F

G H I

A B C

D E F

G H I

A B C

D E F

G H I

A B C

D E F

G H I

Figure 1. An example of frontiers in use. As users Anne and Bob
move between cells, frontiers can sometimes be established. a)
Anne and Bob are in cells A, I respectively. A frontier exists FAI =

{A,B,C,F}, FIA = {G, H,I}. b) A frontier exists FEH = {A,B,C,E,F}, FHE =
{H,I}. c) No frontier exists because cell D can see cell H. d) A

frontier exists FDI = {A,B,C,D,E,F} and FID = {I}.

The work of Steed & Angus was done on simulations using the
Quake II code base [24][25]. The work presented in the remainder
of this paper is live, playable system, implemented as a
modification to the GPL version of the Quake 3 Arena code.

3 ARCHITECTURE

3.1 Strategy
Even if peer-to-peer networking can be made to scale reliably, for
many types of application, it will still be desirable to have a
centralized server doing specific, application-critical state. This
could be state that must be synchronized quickly so that clients do
not diverge, or state that no client can be trusted to compute. In an
FPS, examples might be the game score, and individual kills.
However, much information is transient and updated frequently.
In many systems, and particularly FPSs, this could be positions of
players and other entities. In some engines such classes of
information might even be separated on to different transport
layers. The rationale for this is that if a position information
packet is lost, it doesn’t matter, and might even be detrimental to
performance to retransmit the packet, as would be done with TCP.

The strategy with hybrid networking is thus to classify
changing state into that which can be sent peer-to-peer, and that
which needs to go client-server. There could be overlap between
the two classes; that is information that is sent to both server and
peer clients. Because sending directly to peers is low latency, this
could be done where there are situation where the client believes
that its information is correct and will not be altered by the server.
A good example is position information in dynamic simulations.
These systems commonly do dead-reckoning of position [18].
When a client observes that it needs to update the models of other

25

players, it would be best to notify all clients directly, as this will
provide for lowest error when the dead-reckoning models adapt to
the new information. Similarly in an FPS the information that I
fired a weapon is useful to communicate as fast as possible to
other players. The server in this FPS still needs to know the
position and weapon firing immediately, as it needs to determine
the overall effect of this.

A final strategic reason for distributing data both client-server
and peer-to-peer is to provide redundancy for time-critical
information, in case of loss of either peer-to-peer or client-server
or server-client packets. Indeed, in certain situations, it might be
necessary to fall-back to sending via a server anyway, because one
of the peer-to-peer routes cannot be established due to firewall or
other constraints.

3.1.1 Use of Frontier Sets
Although simply reducing the latency may be desirable in some
situations, peer-to-peer traffic potentially incurs an overhead on
network traffic. A naïve peer-to-peer algorithm generates O(N2)
network traffic each frame, where N is the number of clients. A
perfect peer-to-peer algorithm would send events only when they
are necessary because they would be seen by the receiver.
Obviously such an algorithm is un-implementable because the
client would have to have prior knowledge of where the receiver
was in order to know whether to send a packet. We thus propose
to use frontier sets as an initial strategy to reduce traffic and make
the system scale. It would be eminently feasible to have the server
dynamically indicate to each client which other clients it would
need to communicate to. The server could use a visibility data
structure to determine this. However this introduces some latency
in to the set up of communication.

Frontier sets work exclusively peer-to-peer, and in simulations
for an FPS game they have been shown in simulation to achieve
performance on the network very similar to the perfect peer-to-
peer algorithm [25]. Further, in the FPS simulations, where the
data sent peer-to-peer did not need to additionally be sent to the
server, the frontier set algorithm was more efficient than client-
server algorithm in certain situations. Frontier sets are relatively
easy to implement, as their calculation does not need any
negotiation with the peer or server. Using a peer-to-peer algorithm
also reduces the latency of set-up of a particular peer-to-peer data
flow: it doesn’t require a server computation and thus data is sent
from one peer to another as soon as the sending peer detects that it
is necessary.

3.2 Impact on Latency
The key advantage of using peer-to-peer information is that it
provides for lower latency: the information travels over only one
link not two. However, there is another important advantage: even
if the server is close to the “mid-point” of the link, that is the
peer1-peer2 trip time is close to the sum of the trip time from
peer1-server and server-peer2, the fact that we are cutting out a
server process means that jitter in packet arrival time can be cut
dramatically. Because the peers and server all update at a given
rate, the server introduces a new source of process latency.

Once we introduce hybrid networking, each client sees their
peers with minimum latency, thus reducing instantaneous
inconsistency. However, furthermore, under the assumption that
peer-to-peer and peer-server transit times are similar, the server is
actually using the same state for calculations as the other peers are
displaying at that time.

4 IMPLEMENTATION IN QUAKE 3 ARENA
Quake 3 Arena [11] is a first-person shooter that was originally
released in 1999. It uses a client-server architecture. A machine
can be set up as a dedicated server, or one participant can host a

server. The server has an update rate of 20 Hz [1, p. 163]. Typical
games have up to 32 participants. Like previous games in the
series, Quake 3 Arena uses a cell partitioning of the world and
there is PVS structure across this. The source code for Quake 3
Arena is available under the GPL, so it is easily extensible for
experiments such as ours.

The first alteration that needs to be made is to set up data
structures that allow frontier creation. As discussed in [24] in the
context of Quake II, when a game world is loaded, the PVS data
structure is converted in to an enhanced-PVS data structure. This
takes 10-20 seconds depending on the map, and could be done as
a pre-process.

The second alteration is to add a capability to notify each client
of all its peers, so that they can make direct connections. There are
additional messages to notify of clients leaving and departing the
session.

The third alteration is the networking functions. Quake 3 Arena
uses UDP distribution, with its own reliability mechanism.
Snapshots of data are sent between client and server, and any
resend is triggered only if necessary. Each snapshot packet
contains a number of data structures, and we add a new data
structure which is a peer-to-peer position data structure. The
sending peer client simply sends a packet containing this data
structure to the UDP port on the receiver client that the server
normally connects to, and thus the receiver handles the packet as
it would any packet from the server.

The main logic is thus on the sending side. Each client must
know whether or not it currently has a frontier with another client.
If it doesn’t have one, based on the last position packet received,
doesn’t know, or it has left its half of the frontier then it sends a
position packet.

To implement this each client calls a function,
CL_SendNetworkUpdate each frame. The main job of this
function is to establish if, since the last frame, this client or one of
other clients have left the agreed frontier. If they have, they get rid
of the current frontier. If there is no current frontier then it sends
an update to the other client. Finally it tries to establish a new
frontier with the current cells for this client and the other client.
The client keeps two arrays frontierThis and frontierOther. Each
element of these arrays is one of the sets of cells from a frontier.
The space for each element much be a binary vector the length of
the maximum number of cells in a map. This is not large
compared to other static resources that are allocated in memory by
the game engine. The process of building frontiers is almost
identical to the process discussed in [25] and the implementation
borrows heavily from the Quake II code. In essence though, the
process requires a single iteration through the list of cells in the
map, to construct the two cells lists for the frontier, if they exist. If
the two cells are mutually visible, this function returns
immediately.

One key aspect of the implementation is that peers send
position updates at their frame rate. This can be much more than
would be relayed by the server (i.e. 20Hz), but is a reasonable
strategy for some situations as it results in much smoother
movement. In our tests described in the next section we used
fairly modern PCs, and Quake 3 Arena does not stress modern
graphics cards. If some of the machines on the network were
likely to be more stressed, then rate limiting the peer-to-peer
sending would be necessary.

Final changes included logging capabilities to determine the
latencies and data usage of the different networking routes. The
server process collates all data logged by individual clients.

5 PRELIMINARY RESULTS
Preliminary analysis was done on a small number of two player
games to establish throughput and latency characteristics. Latency

26

is tricky to calculate due to the problems inherent in
synchronizing clocks across the network. Figure 2 gives a
reference diagram for the timings we have used.

tA1 to tA4 are client A’s local time; tB1 to tB5 are B’s local time and
tSV1 to tSV2 are server’s local time. In the game, when client A
shoots towards client B at time tA1 (meanwhile, B is at time tB1), A
will send a packet to B indicating this event. This function is
added for testing purpose. A will also send a packet to server and
that is an original standard function of Quake 3 Arena. B receives
this packet at time tB2 and the corresponding time at A is tA2. B
processes this event then sends back a response packet to A at
time tB3. A gets this response packet at time tA4. The P2P one-way
transmission latency ∆ t1 is considered to be the average of tA2 -
tA1

and tA4 - tA3. Since it is hard to synchronize the time on client A
and B, the measurable time includes: tA1, tB2, tB3, tA4. Thus the one
way P2P transmission is:

 4 1 3 2

1
() ()

2
A A B Bt t t tt − − −

∆ =
.

The P2P overall latency (two-way transmission latency plus
processing latency) is simply:

2t∆ =
4 1A At t− .

When A shoots B, another packet is sent to the server. The server
gets it at time tSV1 then sends a packet to inform B at time tSV2. tSV2-
tSV1 is the processing latency at the server. B gets this packet from
server at time tB5. In the testing plan, overall latency of the
message through server is measured and denoted as:

3 5 2 1B Bt t t t∆ = − + ∆ .

The three latencies were measured by observing 20 packets sent
both ways through the network, as shown in Table 2. We can see
here that there is a very marked difference between the one-way
and client-server communication.

Data rates were also calculated. Rates vary drastically
depending on whether the two players can see each other. In Table
1, Test 1 is a situation when clients are in valid frontier sets so
they do not need to communicate. In Test 2 valid frontier sets
have never been able to be set up. The figures show that clients
are sending packets peer-to-peer at the frame rate. In this extreme
situation communication between client and server is much less
than that between clients. This is because the original Quake 3
Arena server does not send packets to client at the frame rate, but
at a fixed lower rate. In addition, Quake 3 Arena does delta-
compression on the data packets so packet size is normally small.
From the table it could be calculated that the average packet size
of client-server Quake 3 Arena is 27.8 bytes and that of peer-to-
peer Quake 3 Arena is 19.5 bytes. The new Quake 3 Arena being
tested only sends player position information peer-to-peer so 19.5

is quite a high number. In the future the modified Quake 3 Arena
could also perform compression on the packets. Test 3 is close to
the real situation of playing. In this situation the traffic between
the peers is roughly 25% of that to the servers.

6 CONCLUSIONS
We have demonstrated a practical implementation of hybrid
networking as a modification to the Quake 3 Arena game. We
showed that we could reduce instantaneous inconsistency by
reducing client-client position update latency and that this could
be done with reasonable increase in network traffic.

Currently this is a proof-of-concept demonstration, though there
is no theoretical reason why this should not scale to support larger
numbers of players. Although we only presented preliminary tests
with two players, the game does function correctly with more
players and large scale tests are being planned. The previous
simulations on Quake II, [24][25] should indicate that the total
packet overhead for 16 or 32 player games would not be onerous .

TEST CLIENT FRAME SV
PACKET

CL
PACKET

SV
BYTE

CL BYTE

1 A 7997 1795 0 35484 0
B 7996 1795 0 50235 0

2 A 6949 1565 6957 51980 132541
B 6957 1565 6949 57605 138111

3 A 9822 2209 582 68620 11659
B 9817 2209 582 46049 11182

Table 1: Packets and bytes sent by each client, both to the server (SV) and to the other client (CL). The tests are distinguished
by the amount of time which the two players can see each other.

Figure 2. Time stamps used in the calculation of
difference in latency for client-server and peer-

to-peer communication.

Timing ∆ t1 ∆ t2 ∆ t3

Mean 6.375 12.95 28.25
Std.dev 2.804 5.633 11.77

Table 2 Timings of peer-to-peer single way, peer-to-
peer two way, and client-server communication

27

Future work will look at several issues: delegating more
responsibilities to the players, stress testing with more players,
subjective and qualitative review of the impact of latency
reduction on player experience. We would highlight some
expected problems that are common to any peer-to-peer scheme,
such as maintaining consistency when there are dense clusters of
players. This is could be a problem because at least with a client-
server system the peak load on the network, servers and clients, is
well known, whereas in peer-to-peer systems peak load is harder
to calculate.

The modified Quake 3 Arena code is available on
http://www.cs.ucl.ac.uk/staff/A.Steed/

REFERENCES
[1] ARMITAGE, G., CLAYPOOL, M., BRANCH, P. 2006 Networking

and Online Games: Understanding and Engineering Multiplayer
Internet Games, Wiley. k

[2] BEIGBEDER, T., COUGHLAN, R., LUSHER, C., PLUNKETT, J.,
AGU, E., AND CLAYPOOL, M. 2004. The effects of loss and
latency on user performance in unreal tournament 2003®. In
Proceedings of 3rd ACM SIGCOMM Workshop on Network and
System Support For Games (Portland, Oregon, USA, August 30 - 30,
2004). NetGames '04. ACM Press, New York, NY, 144-151.

[3] CECIN, F. R., DE OLIVEIRA JANNONE, R., GEYER, C. F.,
MARTINS, M. G., BARBOSA, J. L. 2004. FreeMMG: a hybrid
peer-to-peer and client-server model for massively multiplayer
games. In Proceedings of 3rd ACM SIGCOMM Workshop on
Network and System Support For Games (Portland, Oregon, USA,
August 30 - 30, 2004). NetGames '04. ACM Press, New York, NY,
172-172.

[4] CHEN, A. AND MUNTZ, R. R. 2006. Peer clustering: a hybrid
approach to distributed virtual environments. In Proceedings of 5th
ACM SIGCOMM Workshop on Network and System Support For
Games (Singapore, October 30 - 31, 2006). NetGames '06. ACM,
New York, NY, 11.

[5] DELANEY, D , WARD, T., S.MCLOONE 2006. On consistency
and network latency in distributed interactive applications: a survey--
part I, Presence: Teleoperators and Virtual Environments, v.15 n.2,
p.218-234, April 2006.

[6] DELANEY, D , WARD, T., S.MCLOONE 2006. On consistency
and network latency in distributed interactive applications: a survey--
part II, Presence: Teleoperators and Virtual Environments, v.15 n.4,
p.465-482, April 2006.

[7] DIOT, C. GAUTIER, L. 1999. A Distributed Architecture for
MultiParticipant Interactive Applications on the Internet. In IEEE
Network, 13(4), 6-15.

[8] FUNKHOUSER, T. A. 1995. RING: A Client-Server System for
Multi-User Virtual Environments. In 1995 Symposium on Interactive
3D Graphics. 85-92, April 1995.

[9] GOLDIN, A., GOTSMAN, C. 2004. Geometric message-filtering
protocols for distributed multiagent environments. Presence:
Teleoperators and Virtual Environments, 13(3), 279-295.

[10] HENDERSON, T. 2001. Latency and User Behaviour on a
Multiparticipant Game Server. Networked Group Communication
2001, Third International COST264 Workshop, London, UK,
November 7-9, 2001 1-13

[11] IDSOFTWARE. 1999. Quake 3.
http://www.idsoftware.com/games/quake/quake3/

[12] IEEE. 1993. ANSI/IEEE Standard 1278-1993, Standard for
Information Technology, Protocols for Distributed Interactive
Simulation, March 1993.

[13] KELLER, J., SIMON. G. (2003) Solipsis: A massively multi-
participant virtual world. In Proceedings of the 2003 International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'03).

[14] KAWAHARA, Y., MORIKAWA, H., AND AOYAMA, T. 2002. A
peer-to-peer message exchange scheme for large scale networked
virtual environments. In Proceedings of the the 8th international
Conference on Communication Systems - Volume 02 (November 25
- 28, 2002). ICCS. IEEE Computer Society, Washington, DC, 957-
961.

[15] KNUTSSON, B. LU, H., XU, W., HOPKINS. B. (2004) Peer-to-
peer support for massively multiplayer games. In Proceedings of the
23rd Conference of the IEEE Communications Society (Infocom
2004), Washington, D.C., 2004. IEEE Computer Society.

[16] MACEDONIA, M. R., ZYDA, M. J., PRATT, D. R., BARHAM, P.
T., ZESWITZ, S. 1994. NPSNET: A Network Software Architecture
for Large Scale Virtual Environments. Presence: Teleoperators and
Virtual Environments, 3(4): 265-287, MIT Press.

[17] MAKBILI, Y., GOTSMAN, C., BAR-YEHUDA, R. (1999)
Geometric Algorithms for Message Filtering in Decentralized
Virtual Environments. Proceedings of the ACM Symposium on
Interactive 3D Graphics, 39-46.

[18] MILLER, D., AND THORPE, J. 1995. SIMNET: the advent of
simulator networking. Proceedings of IEEE, 83(8): 1114-1123.

[19] MORILLO, P., MONCHO, W., ORDUÑA, J.M., DUATO, J. 1996.
Providing Full Awareness to Distributed Virtual Environments
Based on Peer-to-peer Architectures, in Computer Graphics
International (CGI'06), volume 4035 of Springer LNCS, pp. 336-347

[20] MORSE, K. L., BIC, L. AND DILLENCOURT, M. 2000. Interest
management in large-scale virtual environments. Presence:
Teleoperators and Virtual Environments, 9(1):52--68, MIT Press.

[21] QuakeWorld, http://en.wikipedia.org/wiki/QuakeWorld
[22] SINGHAL, S. ZYDA, M. 1999. Networked Virtual Environments:

Design and Implementation. Addison-Wesley.
[23] SMED, J. KAUKORANTA, T. AND HAKONEN, H. 2001. Aspects

of Networking in Multiparticipant Computer Games. In Loo Wai
Sing, Wan Hak Man, and Wong Wai (eds.), Proceedings of
International Conference on Application and Development of
Computer Games in the 21st Century. Hong Kong SAR, China, Nov.
2001, 74-81.

[24] STEED, A., ANGUS, C. 2005, Supporting Scalable Peer-to-peer
Virtual Environments Using Frontier Sets. In Proceedings of the
2005 IEEE Conference 2005 on Virtual Reality (March 12 - 16,
2005). VR. IEEE Computer Society, Washington, DC, 27-34.

[25] STEED, A., ANGUS, C. 2006, Enabling scalability by partitioning
virtual environments using frontier sets. Presence: Teleoperators and
Virtual Environments, 15 (1). pp. 77-92.

[26] STERNS, I.B., YERAZUNIS, W.S. 1997. Diamond Park and Spline:
Social Virtual Reality with 3D Animation, Spoken Interaction and
Runtime Extendability. Presence: Teleoperators and Virtual
Environments, 6(4), 461-481, MIT Press

[27] TELLER, S.J. SEQUIN, C.H. 1991. Visibility Preprocessing for
interactive walkthroughs. Computer Graphics (Proceedings of
SIGGRAPH 91), 25(4):61-90.

28

Solipsis: A Decentralized Architecture for Virtual Environments
D. Frey∗

IRISA
J. Royan†

Orange Labs
R. Piegay ‡

Orange Labs
A.-M. Kermarrec

IRISA
E. Anceaume

IRISA
F. Le Fessant

IRISA

ABSTRACT

Lack of scalability is a key issue for virtual-environment technol-
ogy, and more generally for any large-scale online experience be-
cause it prevents the emergence of a truly massive virtual-world
infrastructure (Metaverse). The Solipsis project tackles this issue
through the use of peer-to-peer technology, and makes it possible
to build and manage a world-scale Metaverse in a truly distributed
manner. Following a peer-to-peer scheme, entities collaborate to
build up a common set of virtual worlds. In this paper, we present
a first draft of the Solipsis architecture as well as the communi-
cation protocol used to share data between peers. The protocol is
based on Raynet, an n-dimensional Voronoi-based overlay network.
Its data-dissemination policy takes advantage of the view-depedent
representation of 3D contents. Moreover, the protocol effectively
distributes the execution of computationally intensive tasks that are
usually executed on the server-side, such as collision detection and
physics computation. Finally, we also present our web component,
a 3D navigator that can easily run on terminals with scarce re-
sources, and that provides solutions for smooth transitions between
3D Web and Web 2.0.

Keywords: Peer-to-peer System, Metaverse, Shared Virtual
Worlds, Massively Decentralized System, Adaptative 3D Stream-
ing.

Index Terms: K.6.1 [Management of Computing and Information
Systems]: Project and People Management—Life Cycle; K.7.m
[The Computing Profession]: Miscellaneous—Ethics

1 INTRODUCTION

The Metaverse concept, first described by Neal Stephenson in his
science fiction novel ’Snow Crash’ published in 1992, and more
generally depicted in the whole cyberpunk writing movement, has
deeply influenced generations of virtual reality pioneers, artists,
game designers and nowadays virtual worlds enthusiasts. Over the
last sixteen years, the notion has evolved toward a synonym for
virtual world, loosing progressively the ’Universe’ part of the con-
catenation and the huge and infiniteness feeling emanating from it.

However, for us the Metaverse is a system of numerous, inter-
connected virtual and typically user-generated worlds (or Meta-
worlds) all accessible through a single-user interface. According
to this strict definition, the only Metaverse existing today is a pre-
historic one: the World Wide Web itself. Plenty of virtual worlds
flourish these days claiming they are the Metaverse, but they only
are a part of it, as websites are the leaves of the worldwide web tree.
We need three things to reach this cyberpunk authors’ dream. First,
a way to sustain the incredible amount of data and MIPS involved,
then a set of protocols to provide interoperability and finally new
tools to build virtual worlds as easily as a traditional HTML page.
These requirements are the cornerstones of our project.

∗e-mail: davide.frey@irisa.fr
†e-mail: jerome.royan@orange-ftgroup.com
‡e-mail: romain.piegay@orange-ftgroup.com

The paper is structured as follows. We first present a synthetic
overview of the Solipsis research project in Section 2, and an analy-
sis of related work in Section 3. Then we describe how we envision
to manage decentralized virtual worlds, describing in details our
peer-to-peer architecture, how we manage 3D-model sharing and
physics computation, and how to stream 3D contents in an adap-
tative way. Finally, in Section 5, we present our navigator, which
is the user interface used to interact with the Solipsis Metaverse,
while in Section 6, we conclude the paper and outline our future
directions.

2 PROJECT OVERVIEW

In a word, Solipsis is a platform for massively multi-participant and
user-generated virtual worlds. It relies on a peer-to-peer architec-
ture that makes scalability its main characteristic: the universe may
thus be inhabited by an unlimited number of participants. As there
is no central authority, the virtual universe is by definition public
and the inhabitants’ freedom, as well as the world builders and de-
velopers’ imagination, are boundless.

2.1 Expected results
We seek to spark off the emergence of an unbounded public virtual
universe that is designed, created, run, but also potentially hosted,
by people throughout the world. Freedom can be spotted as the
main characteristic of this opensourced system (license GNU/GPL
v2+) because the virtual universe does not belong to any organiza-
tion; it belongs to all the users.

The major deliverable is a new network communication protocol
adapted to the strong constraints of self-produced environments, to
massively multi-user applications and to virtual reality, which make
the system more scalable as the resources its uses are those provided
by its users.

We also work on creating an ergonomic and user-friendly inter-
face to allow non-professional agents to easily create 3D scenes and
contents (declarative or automatic modeling, tagging..). Neverthe-
less, we do not want to mark a break with the actual flat 2D web;
rather, we aim to start a smooth transition towards an immersive
Internet making the most of both 2D and 3D. As we will see in part
V, our navigator can be embedded in a regular webpage - in-web
world - or map regular webpages as an interactive texture on any
3D surface - in-world web.

The last major expected result is a deep analysis on the behavior
(virtual social life, game, education, services..) of metaverse users
to give directions for future developments.

3 RELATED WORK

The Web3D consortium originally had the ambition to create a
freely navigable online world [14]. Unfortunately, due to techni-
cal constraints, such as bandwidth limitations, the VRML standard
was only used to encode simple 3D contents in order to visualize
them on web sites. Only related research and bandwidth increase
have now made it possible to draft the architecture of a Web3D,
metaverse or cyberspace.

3.1 Compression and adaptive 3D Streaming
A lot of research work has focused on the compression of 3D mod-
els, as well as on adaptive streaming methods that allow a progres-

29

sive and fast transmission over networks of the required 3D contents
visualized from the current viewpoint.

First, existing 3D compression algorithms use both techniques
adapted from the 1D and 2D cases (like wavelets, entropy coding,
and predictive coding), and completely different approaches that
take advantage of the properties of 3D surfaces (like Edgebreaker,
Subdivision Surfaces, and triangle strips)[9]. Also, parametric solu-
tions, that provide intuitive modeling tools, are widely used to cre-
ate avatars, complex creatures, or vehicles in games. More complex
3D contents can be created using procedural modeling solutions
that have the drawback of requiring a reconstruction process exe-
cuted on the fly on the client side. Parametric and procedural mod-
eling provide very good compression rate compared to usual mesh
compression algorithms, but no generic solutions exist to model a
great variety of objects.

The second solution consists in filtering the 3D contents required
to visualize the scene from a given viewpoint. Indeed, a complete
download of a huge 3D scene is not necessary to render with opti-
mal details the virtual environment from a given viewpoint. First,
the area of a 3D model projected on the screen depends not only
on its size, but especially on its distance from the viewpoint. Many
solutions have therefore been proposed to adapt the resolution of
3D models to the current viewpoint [8]. Continuous levels of detail
allow to transmit refinements progressively as the viewpoint comes
closer to 3D objects [10]. Second, most of 3D objects in huge and
complex 3D scenes are occulted by other ones during the naviga-
tion. Thanks to an offline computation of 3D objects visible from
regions resulting from a partitioning of the navigation area, servers
can signifanctly reduce the amount of data that has to be sent to
the client, without affecting the visual quality [16]. Unfortunately,
visibility filtering methods have to be disabled during flying-over
navigation, since occultations are clearly limited. In fact, these fil-
tering methods provide multi-resolution functionalities allowing an
adaptive 3D streaming of the virtual environments.

3.2 Centralized architectures
Several architectures take advantage of filtering methods presented
previously [7, 6]. Commercial platforms such as Google Earth [1]
and Second Life [2] have recently known a tremendous craze from
the public. The first allows navigation into and over a well-detailed
model of the earth, with terrain and buildings. In doing this, it
takes advantage of an adaptive streaming of terrain textures [15],
associated with a multi-resolution wavelet-based representation for
terrain, and static levels of detail for buildings. The second pro-
vides an advanced social-network service combined with general
aspects of a metaverse. The Second Life client integrates model-
ing tools that allow users to create new components of the virtual
environment.

In addition to the above, more than fifty online virtual worlds
have appeared over the last few years, and are usually based on
centralized architectures. Huge environments are generally parti-
tioned, according to a grid, in regions that are managed by dedi-
cated servers, called region servers. Unfortunately, in order to syn-
chronize the game states of the world for all connected clients, most
processes such as collision detection, physics computation, and ani-
mation, are executed on the server side. Moreover, the region server
is the only source that can provide clients with the 3D models of the
scene for its visualization. Thus, the number of clients that can nav-
igate into a region managed by only one server is clearly limited.

3.3 Peer to Peer Architectures for Virtual Worlds
A centralized architecture cannot lead to a truly self-scalable solu-
tion, even with the use of multiple servers. Indeed, client-server
architectures lead to prohibitive deployment and maintenance costs
when it comes to very large scale applications with thousands of
connected clients. On the other hand, thanks to their self-adaptation

features, P2P network overlays have clearly proved to be an effec-
tive alternative to powerful servers.

Based on the fact that if peers have nearly the same viewpoint,
they are likely to need the same data, geometric proximity is ob-
viously the main criterion for setting up peer connectivity within
virtual environments. However, finding and maintaining the appro-
priate peer connectivity is a very difficult problem in a dynamic
environment and in the presence of churn, that is where peer view-
points are allowed to move freely and when peers can disconnect
or appear at any time. Solipsis [12] and VON [11] are the first
P2P layers providing a solution for 2D environments. In these P2P
architectures, peers are connected to each other according to their
current 2D position. Dedicated algorithms are used to achieve the
global stability of the P2P network while fulfilling a global connec-
tivity constraint (i.e. there must exist at least one path between each
pair of peers).

Maintaining real-time peer connectivity in a n-dimensionnal
space is much more complex. For this reason, Douglas et al. [5]
have proposed a region-based approach using a distributed spa-
tial data index in a multidimensional space to find nearby objects
with which direct connections can be established. Finally, Cavagna
et al. [4] show that server-less P2P networks can efficiently deal
with very large environments, first by using well-suited descrip-
tors to specify areas of interest for continuous levels of detail (for
on-demand streaming), and second by having peers exchange in-
formation about their own serving capabilities (for self-regulating
peer-upload bandwidth).

4 DECENTRALIZED VIRTUAL WORLDS MANAGEMENT

Our response to the demand for an efficient metaverse platform ca-
pable of 3D interactions among entities is the new version of Solip-
sis. Its key characteristic is the ability to distribute the cost asso-
ciated with the management of its metaverse among the hosts par-
ticipating in it. This is made possible through the decentralization
of heavy processes like collision detection, computation of physics,
as well as communication among the large number of nodes that
participate in the metaverse. In the following, we present the main
characteristics of the architecture and of the protocol enabling such
decentralization.

4.1 Definitions
The Solipsis metaverse consists of a set of entities, each belonging
to one of three categories: avatars, objects, and sites. Avatars are
the main actors of the metaverse as they are the only entities that
are capable of autonomous movement. In most cases they are vir-
tual representations of the users of the metaverse and are directly
controlled by them using the navigator platform described in Sec-
tion 5. Objects, on the other hand, are virtual representation of
entities from the real world such as furniture, books and whatever
object may be moved or picked up by an avatar. Avatar and objects
may also be robotic-like entities controlled by user-defined soft-
ware components. Finally, sites constitute the basic building blocks
of the metaverse and represents portions of the virtual space that
may be occupied by objects or in which avatars can roam.

Avatars, objects, and sites are all associated with 3D-
descriptions, each consisting of a mesh- or prims-based model, a
set of textures, and, in the case of avatars or objects, also of an ani-
mation. Such 3D-descriptions constitute the basis for the rendering
of entities in the navigator platform.

The state of an entity in the metaverse is determined by an en-
tity descriptor, from now on referred to simply as descriptor. An
entity’s descriptor can contain information regarding its position,
its physical properties, and whatever is needed to display the en-
tity and compute its interaction with the rest of the metaverse. For
example, a descriptor containing a key frame can be used to syn-
chronize animations, videos, and so on. Moreover, filtering de-

30

UID universal identifier of the entity
seqNum sequence number
owner identifier of the node managing the entity
type site, avatar or object
loc location in the 3D space
ori orientation in the 3D space
shape shape from a predefined set
box bounding box of the object
Rp perceptibility radius: distance from which the object

is visible in the absence of obstacles
Rb radius of smallest sphere enclosing the entity
objsa list of entities attached to the current one
f1 first file of 3d-description
v1 version number for first file
c1 list of hosts that have cached v1 of f1
... ...
fn n-th file of 3d-description
vn version number for n-th file
cn list of hosts that have cached vn of fn
... additional fields for progressive levels of details

Table 1: Example of a simple descriptor

scriptors defining areas (concentric spheres, hierarchical partition-
ing, cells) associated with a level of detail or a set of visible objects
may be used to achieve efficient on-demand streaming while sat-
isfying view-dependency criteria. Finally, descriptors may contain
load-balancing information regarding, for example, the available
resources or serving capabilities of a host [4]. Table 1 shows a sam-
ple descriptor containing the most relevant information. Although
the descriptor is shown as a single object, the Solipsis implemen-
tation may split it into several descriptors regarding, for example,
physical properties, location, or level of details in order to reduce
communication cost.

4.2 Solipsis Hosts and Nodes
From a practical viewpoint, the Solipsis platform is distributed over
a set of hosts that maintain information about every entity that is
currently present in the metaverse. Each host is associated with a
single instance of the Solipsis platform, and throughout its lifetime,
it may create new entities or destroy previously created ones ac-
cording to the requests of the navigator component. Also, similar
to an entity, each host is associated with a unique identifier (UID).

Because each host may be responsible for several entities at the
same time, we define a (Solipsis) node as the set of resources dedi-
cated to the management of a given entity. Each node encapsulates
information about the corresponding entity’s descriptors as well as
the threads of control responsible for managing all the interactions
of the node with the rest of the Solipsis metaverse as well as with
the navigator platform.

4.3 P2P Architecture
A fundamental aspect of Solipsis is its completely decentralized
architecture designed to accommodate large numbers of entities,
accessed by large numbers of users distributed over the Internet.
The core of this decentralized architecture is a peer-to-peer overlay
network, which is essentially a graph where nodes are connected by
virtual logical links, each of which may consist of several physical
links in the underlying IP network. These logical links may be laid
out according to some proximity metric so as to enable efficient
storage and retrieval of information.

Recent years have seen the emergence of a large number of peer-
to-peer overlay networks, with different structures and capabilities.
In the context of Solipsis, we leverage the potentialities of peer-
to-peer overlays by building our metaverse on top of RayNet [3].
Raynet is a multi-dimensional overlay network based on the con-

Figure 1: The p2p architecture showing the mapping of the Raynet
layer on the virtual world layer according to the proximity of nodes in
the virtual space. The host layer shows clients connected into a peer
to peer scheme. Note that while the positions of avatars and objects
are also shown, for clarity, on the Raynet layer, only site nodes ac-
tively join the RayNet and form the corresponding Voronoi diagram.

cept of Voronoi tessellation. As shown in Figure 1, each node in the
overlay is associated with a position in a multi-dimensional space.
Neighborhood relationships between peers are then determined by
the distance between the corresponding points in this space. Specif-
ically, two Raynet nodes are neighbors in the overlay if the two cor-
responding points are neighbors in the Delaunay graph comprising
all the points associated with Raynet nodes.

Given a set of generator points{p ∈ ℜd}, the Delaunay graph
is obtained as the adjacency graph of the corresponding Voronoi
diagram, which in turn is a tessellation of the d-dimensional space
ℜd . Specifically, the cell in the tessellation associated with a point
px is such that it contains all the points that are closer to px than to
any other generator point in the set. This property enables Raynet
to route to any node in the overlay by means of a simple greedy
approach. Moreover, the addition of Kleinberg-like [13] long-range
links allows this routing process to converge to its destination node
in a polylogarithmic number of hops on average.

Within the context of Solipsis, we use the Raynet structure to
organize site nodes into a 3-dimensional overlay in which the posi-
tions of nodes mimic those of the corresponding sites in the meta-
verse.1 This allows our architecture to exploit very simple protocols
to manage the interaction between avatars, objects and the sites they
are currently located in as we describe in the following.

4.4 Decentralized physics computation
The choice of a peer-to-peer overlay such as Raynet is motivated
by our goal to scale to metaverses containing very large numbers
of entities, possibly gathered within the same site or within an oth-
erwise small region of space. Organizing sites nodes into such an
overlay, however, is only half of the picture. Solipsis also incor-
porates a fully decentralized protocol that distributes the cost asso-
ciated with heavy computations such as those regarding collision
detection, physics, or animation.

Each avatar node is responsible for computing its own position
based on physical criteria like its mass, momentum, and forces ap-
plied by the entities in its surroundings. Our decentralized approach
allows it to achieve this result by taking into account only a small

1Extensions of the metaverse architecture to higher dimensions are nat-
urally supported by the Raynet overlay.

31

set of 3D models: those associated with the current site and with
the entities that are in the avatar’s immediate surroundings. For ex-
ample, in the case of collisions, each avatar may immediately rule
out the entities that are at a distance that is greater than the radii,
Rb, of the spheres enclosing its and their own bounding boxes plus
a configurable safety distance.

The basis for this decentralized computation of physics is a com-
munication protocol that allows nodes to exchange information
about entities’ positions with three levels of heartbeat messages.
Critical information that is required for the computation of collision
detection is exchanged directly in a peer-to-peer fashion between
the avatars that may potentially collide with each other, based on
the size of their bounding boxes. Less critical information that is
nonetheless necessary to provide the navigator with a clear snap-
shot of the current scene state is instead propagated indirectly, in a
multi-hop fashion. Finally, information about distant objects or ob-
jects that have just joined the metaverse is propagated by site nodes
to the avatars within their cells at a significantly lower frequency.

An avatar joining Solipsis contacts the site node responsible for
its joining - or latest - location. Although the avatar is not part
of the overlay, it can easily do this by using the Raynet to route a
message containing its descriptor to the site node that is closest to
its own position. This node then reacts by providing the avatar with
the descriptors of the entities that are potentially visible from its
location. From this point on, the avatar and site nodes exchange this
information periodically to implement the low frequency updates
described above. An analogous mechanism is used to manage the
positions of object nodes. The use of the Raynet always allows
avatars and objects to contact the right node as they move from site
to site.

In addition, avatar and object nodes interact with the avatars and
objects around them in order to exchange the critical up-to-date in-
formation about the entities that may collide with them. Also, while
sending an update to a nearby node, avatar and object nodes also
include information received from other nearby nodes that are not
within collision distance of the destination node; thus implementing
the second level of peer-to-peer updates.

4.5 Dynamic Object Management

While avatars are the main actors in the Solipsis environment, ob-
jects also play an important part as they can interact with avatars,
be picked up, be moved from one location to another, or even move
freely through space subject to gravity or other forces, or according
to a script of animation. This requires our protocol to determine
the current position of objects in addition to that of avatars. This is
achieved through a combination of three mechanisms that depend
on the state the object is currently in.

Let us consider an object that is currently stationary within a site
S’s cell. The position of the object is maintained by S’s site node,
which also maintains the main copy of the object’s descriptor. As
soon as an avatar tries to interact with the object, by moving it or
picking it up, its avatar node sends a request to the site node to
take over responsibility for the object. The site node grants such
responsibility to the first avatar requesting it, according to the order
in which requests reach the site node.

When permission to take over the object is granted, the object is
dynamically detached from the site and attached to the avatar. The
corresponding descriptors are updated, and the avatar nodes starts
computing physics and maintaining the descriptor for the object.
Note that physics computation need not be performed by site nodes,
in that an object can only be attached to a site when it is in static
equilibrium.

After interacting with the object, the avatar may pass the ob-
ject on to another avatar, or leave it in the current or in a different
site. In the former case, the recipient of the object takes over its
management, and starts computing its physics, and animation, and

updating its descriptor. In the latter, on the other hand, the object
may be left in a stationary or in a dynamic state. If the object is
stationary, then the site may take control of its descriptor and man-
age it without computing any physics. If, on the other hand, the
object is moving, or subject to forces that are not in equilibrium,
then a new object node with a corresponding thread is instantiated
on the host associated with the avatar to which the object was at-
tached. This new object node takes responsibility for managing the
object’s movements and updating its descriptor until it is picked up
by a new avatar or until it reaches an equilibrium state at some site.
It should be noted that a host may keep managing an object, even
if the associated avatar is at a distant location. This allows hosts
to manage robotic-like entities that are controlled by user-defined
software components, e.g. by associating streaming video to ob-
jects.

4.6 Decentralized 3D-Model Sharing
The architecture we have described so far assumes that nodes are
able to retrieve the 3D-description of entities in order to compute
collisions and display the entities after filtering them based on the
information in their descriptors. In the following, we describe our
mechanism for maintaining and retrieving these 3D-descriptions.
As with the rest of the protocol, our goal is to distribute the cost of
managing 3D-descriptions among Solipsis participants.

3D-descriptions are managed by the nodes responsible for the
corresponding entities, and may be downloaded by any node that
needs to display the object or perform collision detection. How-
ever, having all hosts download a given 3D-description from the
node responsible for its entity would place an unnecessary load on
the corresponding host. We address this issue, by having Solipsis
nodes cache previously downloaded descriptions. This allows them
to offer them for download to other Solipsis nodes running on the
same or remote hosts.

All the nodes residing on a host, store their own 3D-descriptions
as well as those of other visible objects in a shared repository (de-
picted in Figure 2) that is accessible by all the nodes running on the
same host. Moreover, each node records in its entity’s descriptor a
list of the hosts that currently hold a copy of any of the files that
constitute the associated 3D description. Whenever a node caches a
3D-description, it informs the node responsible for the entity, which
then updates the corresponding descriptor to include a reference to
the new copy and then propagates it with its subsequent heartbeat
messages. Similarly, when a node detects that a host listed in the
descriptor does not have the current copy of an entity’s description,
it sends a message to the corresponding node, which updates the
descriptor accordingly.

4.7 Managing Disconnections
The architecture of Solipsis is designed to tolerate unexpected dis-
connections of hosts throughout its operation. First, site nodes al-
ways cache the 3D-descriptions, in addition to the descriptors, of
neighboring site nodes. This allows the RayNet to manage the dis-
connection of a site node by automatically assigning its manage-
ment to any of the neighboring site nodes. The disconnection of an
avatar or object node, on the other hand, is treated by attaching the
object or avatar to its current site and by leaving it in a stationary
state until the corresponding user reconnects.

5 THE NAVIGATOR

A navigator must be able to create a huge metaverse and democ-
ratize its use. For this reason, we base our navigator on the Ogre
3D rendering engine. Its robustness, efficiency, upgradability and
openness are, in fact, essential features for a durable system. More-
over, Ogre 3D can be easily embedded in web pages thanks to a
Mozilla or ActiveX plugin. Conversely, web pages can be mapped
on 3D models as interactive textures thanks to the Navi library

32

Figure 2: Nodes hosted on a proxy server to allow accesses to the
metaverse on terminals with low resources such as mobiles.

Figure 3: Web based navigator embedding modeling tools, and pro-
viding a mapping of web pages as interactive textures.

based on Gecko. Thus, the navigator allows a Web 2.0 navigation
inside the Web 3D, as well as a Web 3D navigation inside the Web
2.0. Our view is, in fact, that Web 3D and Web 2.0 should integrate
each other (see figure 3). Since the vitual universe belongs to all
users, modeling tools are embedded within the navigator in order
to create, modify or delete contents. At the moment, we focus on
intuitive tools, but procedural, declarative, parametric and sketch-
based modeling tools are obviously considered. Finally, to pro-
vide access to the virtual universe on mobile devices, nodes can be
hosted by proxy servers, to reduce the amount of computation that
has to be performed on terminals with scarce resources. Thus, hosts
can compute collision detection, physics animation, data-exchange
management, and viewpoint-based filtering, and then communicate
with the navigator that only needs to render the virtual environment
and interact with it (see figure 2).

6 CONCLUSIONS AND PERSPECTIVES

We presented our vision for a decentralized architecture for virtual
environments. Our solution is based on an n-dimensional Voronoi-
based peer-to-peer network, called RayNet. This allows it to dis-
tribute communication and computational cost among the various
nodes present in the virtual space. Our architecture enables the
decentralization of complex tasks related to physic-realistic mod-
eling. To achieve this, nodes preliminarily filter the set of avatars
and objects that may collide with their own and then evaluate colli-
sions and physics for a small set of entities. Our solution also sup-
ports dynamic objects that may be picked up and dropped by avatars
or controlled by means of user-defined software. Moreover, it en-

ables adaptive streaming of 3D models in a completely decentral-
ized fashion while adapting streamed data to avatars’ viewpoints.
Also, the use of an n-dimensional overlay allows us to extend the
metaverse to support social or semantic proximity between object
or avatar nodes. Access to the metaverse is made possible by a nav-
igator that may run as a stand-alone platform or embedded within a
web page. The navigator exploits interactive texturing to enable the
visualization of Web 2.0 components in the virtual world and it in-
tegrates tools for modeling new 3D contents. Moreover, it supports
operation on resource-scarce devices such as mobile phones. Our
project team is currently working on a fully open-source implemen-
tation of the Solipsis architecture, and we hope that the community
of users will help us improve Solipsis and enable us to evaluate its
effectiveness in a world-wide testbed.

ACKNOWLEDGEMENTS

First, the authors wish to thank all people who contributes to the
Solipsis project as well as all pioneers of the decentralization of
virtual environments whithout who this project would not be also
advanced: M. Keller, M. Simon, M. Cavagna, M. Bouville and M.
Beaumont. This work was supported in part by a French collabora-
tive R&D project (ANR-RIAM) leaded by Orange Labs, funded by
ANR and Media & Networks cluster of Brittany, involving IRISA,
Rennes 2 University, Archivideo and Artefacto.

REFERENCES

[1] http://earth.google.com/.
[2] http://www.secondlife.com/.
[3] O. Beaumont, A.-M. Kermarrec, and E. Rivire. Peer to peer multidi-

mensional overlays: Approximating complex structures. In OPODIS,
11th International conference on principles of distributed systems,
2007.

[4] R. Cavagna, C. Bouville, and J. Royan. P2p network for very large
virtual environment. In VRST, pages 269–276. ACM, 2006.

[5] S. Douglas, E. Tanin, and A. Harwood. Enabling massively multi-
player online gaming applications on a p2p architecture. In Proceed-
ings of the IEEE International Conference on Information and Au-
tomation, pages 7–12. IEE, 2005.

[6] E. Frécon and M. Stenius. Dive - a scalable network architecture
for distributed virtual environments. Distributed Systems Engineering
Journal (Special issue on Distributed Virtual Environments), 5, 1998.

[7] T. A. Funkhouser. RING: A client-server system for multi-user virtual
environments. In Symposium on Interactive 3D Graphics, pages 85–
92, 209, 1995.

[8] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual envi-
ronments. In SIGGRAPH ’93, pages 247–254, New York, NY, USA,
1993. ACM.

[9] P. Gioia, O. Aubault, and C. Bouville. Real-time reconstruction of
wavelet-encoded meshes for view-dependent transmission and visu-
alization. IEEE Trans. Circuits Syst. Video Techn., 14(7):1009–1020,
2004.

[10] H. Hoppe. Progressive meshes. Computer Graphics, 30(Annual Con-
ference Series):99–108, 1996.

[11] S.-Y. Hu and G.-M. Liao. Scalable peer-to-peer networked virtual
environment. In NetGames ’04, pages 129–133. ACM, 2004.

[12] J. Keller and G. Simon. Solipsis: A massively multi-participant virtual
world. In Int. Conf. Parallel and Distributed Techniques and Applica-
tions, pages 262–268, 2003.

[13] J. Kleinberg. The Small-World Phenomenon: An Algorithmic Per-
spective. In Proceedings of the 32nd ACM Symposium on Theory of
Computing, 2000.

[14] M. Pesce, P. Kennard, and A. Parisi. Cyberspace. In First Interna-
tional Conference on WWW, 1994.

[15] C. C. Tanner, C. J. Migdal, and M. T. Jones. The clipmap: a virtual
mipmap. In SIGGRAPH ’98, pages 151–158. ACM, 1998.

[16] S. J. Teller and C. H. Séquin. Visibility preprocessing for interactive
walkthroughs. SIGGRAPH Comput. Graph., 25(4):61–70, 1991.

33

The HyperVerse - Concepts for a Federated and
Torrent-Based “3D Web”

Jean Botev, Alexander Höhfeld,
Hermann Schloss, Ingo Scholtes

Systemsoftware and Distributed Systems
Computer Science Department

University of Trier
Email: {botev, hoehfeld, schloss, scholtes}@syssoft.uni-trier.de

Markus Esch
Faculté des Sciences, de la Technologie

et de la Communication
University of Luxemburg

Email: markus.esch@uni.lu

Abstract— The vision of a “3D Web” as a combination of
massive online virtual environments and today’s WWW currently
attracts a lot of attention. While it provides a multitude of
opportunities, the realization of this vision on a global scale poses
severe technical challenges. This work-in-progress paper intends
to point out some of the major challenges and highlights key
concepts of an infrastructure that is being developed in order to
meet them. Among these concepts, special emphasis is put on the
usage of a two-tier Peer-to-Peer approach, the implementation of
Torrent-based data distribution and the development of a graded
consistency notion. The paper also briefly presents the current
state of a prototype implementation that is being developed
in order to validate these concepts and evaluate alternative
approaches.

I. INTRODUCTION

Although various forms of distributed virtual environments
currently attract a lot of attention, most of today’s represen-
tatives are proprietary worlds that are hosted in a centralized
fashion. When considering the vision of something one might
call the “3D Web”, in section II we find that - in contrast to
today’s precursors - decentralized approaches are required in
order to provide a distributed persistent virtual environment
on a global scale. With the HyperVerse project we intend to
investigate technologies that are appropriate to realize such a
scenario.

A global scale “3D Web” offers a variety of obvious
interesting opportunities, like immersive mass events and the
facilitation of real-time interaction between users based on
advances in human interface technologies. Another interesting
scenario arises from the observation that mobile devices are
becoming increasingly location-aware and network-capable
while at the same time getting smaller and cheaper. Thus it
seems reasonable that in the future more and more everyday
objects will feature such capabilities as well as all kinds
of sensor technology. Combining these developments with a
“3D Web” would allow more and more real-world objects to
possess a real-time virtual representation, giving users intuitive
means to remotely access various kinds of information on
their state. In this respect, the current surge of geo-referenced
information accessible via virtual globes like “Google Earth”1

1http://earth.google.com

or “Virtual Earth”2 is a first glimpse of what is yet to come. In
the course of this paper, a persistent virtual environment which
provides these opportunities at a global scale will henceforth
be called “HyperVerse”.

While its opportunities sound alluring, it is obvious that the
realization of a HyperVerse scenario poses severe technical
challenges. In the context of this paper, we restrict ourselves
to briefly mentioning some of the - according to our opinion
- most important questions:

• How can scalability suitable for the provision of a global
scale HyperVerse scenario be achieved?

• How can such a scalability be combined with interactiv-
ity, consistency and persistency?

• How can client resources be utilized in a way that
unburdens core network resources?

• Which cross-layer aspects can be identified that are
induced by HyperVerse-specific communication patterns?

• How can the client-side fan-in problem in densely popu-
lated regions be resolved?

The HyperVerse project aims at the creation of a federated
infrastructure meeting these requirements. In section II we
will present some of the key concepts the project relies on.
Section III will give a brief description of the current state of
a prototype implementation that is being developed in order
to evaluate these concepts.

II. CONCEPTS OF A FEDERATED HYPERVERSE
INFRASTRUCTURE

In order to retain the decentralized nature, scalability, in-
dependence and reliability of the WWW and the Internet in
general, for the provision of a HyperVerse scenario it is not
eligible to rely on centralized server farms that are controlled
by a single instance. Thus we embrace Peer-to-Peer (P2P)
technologies in order to support the targeted global scale.
For a multitude of reasons we do not aim at a pure P2P
approach but rather use a two-tier architecture consisting of a
highly structured federated backbone and a loosely structured
P2P client overlay. The main reason for this is the expected
churn rates in the HyperVerse scenario. Since we envision

2http://www.microsoft.com/virtualearth

34

a lightweight client software that is used in a way that is
similar to today’s Web browsers, clients will most likely
exhibit exceedingly high churn rates as well as heterogeneous
capabilities. Accordingly the P2P topology used for clients
needs to be highly churn resilient in the face of global-
scale user numbers. At the same time HyperVerse scenarios
require massive amounts of persistent data to be reliably and
efficiently accessible. Unlike in today’s Massive Multiplayer
Online Games (MMOGs), this data is required to be totally
dynamic and cannot be predistributed with clients. We tackle
this problem by using a massive amount of public servers
that are supposed to be comparably reliable and host data in
a federated manner. Public servers resembling today’s Web
Servers, we do not require them to be under control of
any centralized authority. For their provision we rely on the
incentive of being able to publish information.

In accordance with [11], by explicitly distinguishing be-
tween these two classes of peer participants we exploit their
different properties in order to provide better reliability, avail-
ability and scalability of the whole system. The comparative
low churn rate of public servers can be utilized by using
highly structured P2P overlay networks. This provides for an
efficient and reliable data retrieval. For clients, less structured
topologies seem to be appropriate (see figure 1). The BitTor-
rent protocol [5] has proven to be valuable for the scalable
distribution of huge files and is extremely resilient against
churn [2]. In particular this resilience does not depend on
the number of peers. The following section will provide more
details on the application of similar approaches to distributed
virtual environments.

Loosely
Structured
Peer Overlay

Highly Structured
Public Server Overlay

Fig. 1. Two Tier HyperVerse Infrastructure

A. Torrent Based Data Distribution

In order to be able to describe the Torrent-based distribution
of information, we give a short description of the dynamic
space-based interest management model implemented in the
current HyperVerse prototype in so far as it affects concepts
described in the following paragraphs. For the same reason,
we also give a short description of the caching scheme
that has been implemented in order to exploit data locality
inherent to virtual worlds. Throughout the paper we refer to
the terms object and terrain data as mesh, texture and meta
information that are associated with dynamic 3D objects as
well as comparably static world terrain.

a) Interest Management: Given an avatar’s 3D position
p in the virtual world, we differentiate between its Field of
View (FoV) and Area of Interest (AoI). Assuming a maximum
view distance d, an avatar’s FoV is described by a sphere
with radius d around p. The AoI is another sphere with radius
d + ∆ (∆ ≥ 0) around p. Initially all objects and terrain
data within the AoI sphere around p are retrieved. In order to
mitigate the effects of retrieval latency, we use another sphere
with radius d + Λ (Λ < ∆) around p. The user can move
within a distance Λ around p (see e.g. position p′ in figure 2)
without requiring further object retrieval. Whenever the avatar
has moved more than Λ away from the position p, around
which the AoI has been retrieved (see e.g. position p′′ in figure
2) - a new AoI centered around the current position will be
set. At this point, information on all objects and terrain within
the new AoI need to be retrieved, more precisely only on
those that haven’t been in the AoI before. The introduction of
the threshold Λ allows for more time for requesting these data
since the users FoV is still ∆−Λ away from regions for which
no information has been prefetched. Accordingly, the choice
of the parameters Λ and ∆ influences retrieval frequency, the
amount of data present within the AoI as well as the retrieval
latency that can be tolerated without having visual effects.
Both parameters can be chosen by clients according to their
individual capabilities.

∆

p

p´´

p´
d

Λ

Fig. 2. A 2D projection of Area of Interest (AoI) and Field of View (FoV)

b) Data Locality in Virtual Environments: Looking at
the pattern of access to object and terrain data induced by
a supposed primary continuous movement through virtual
worlds, one recognizes both temporal and spatial locality of
reference with respect to the world’s geography. Due to the
avatar’s movement, there is a higher probability for objects
near the avatar’s FoV to be accessed in the future - a fact
that is allowed for by prefetching data from within the AoI
as described above. One aspect of temporal locality in virtual
worlds refers to the fact that recently accessed objects remain
in the users FoV for some time and therefore will be accessed
repeatedly. Another aspect is caused by frequent visits to the
user’s favorite venues. A certain user exhibits e.g. a higher
probability of frequently accessing information residing in
distinct areas within the virtual world. Even in today’s WWW

35

one recognizes that most users repeatedly check an individual
working set of favorite information resources, be it subscribed
feeds, news portals, Blogs or community Websites. In today’s
WWW, in order to save redundant transmission, these locality
aspects are allowed for by caches at various stages like user
agent caches or caching proxy agents. In distributed virtual en-
vironments, data locality can be exploited by applying caching
techniques as well. The rendering process involved in clients
implicitly requires objects and terrain data to be cached locally
at least as long as these data concern objects in the user’s FoV.
While such a cache can be based on a simple LRU strategy,
the further exploitation of locality and optimization of the
cache hit rate requires more advanced concepts. The current
prototype HyperVerse browser (being described in section III)
uses a multi-tier caching strategy in which object information
within the FoV are held in graphics memory. This is backed up
by a fixed-size in-memory cache that uses a combined LRU,
geographical distance and object size metric as a replacement
heuristic. It is especially important to consider the in-memory
size of cached objects since it might involve huge variations
and discarding big objects bears a greater potential for wasting
network resources: Wrongly ejecting e.g. a few Kilobyte-
sized object is doubtlessly less troublesome than spuriously
discarding one being several Megabytes in size. The in-
memory cache is backed up by a permanent storage cache file
with configurable size. The maximum size of this cache can
most likely be amply chosen in order to optimize performance
and unburden network resources.

Caching is complicated by the fact that objects must be
allowed to dynamically change at any time. This may occur
following a user interaction with an object or abruptly in a
scenario of augmented virtual real-world object representations
that actively push state updates triggered e.g. by sensors. Due
to the usage of caching, at a given time several copies of data
may reside in the caches of different HyperVerse browsers. In
order to keep these cached data coherent, a Publish/Subscribe
paradigm maintaining subscriptions to objects residing in a
client’s cache is used. Dynamic and asynchronous changes of
objects are actively pushed to subscribers in order to maintain
cache coherency. Depending on the cache-tier, different update
strategies are used. Updates of objects that reside in graphics
or system memory (i.e. especially those in the FoV) are
pushed to subscribers instantly. For objects residing in the
disk storage cache file, the first update of an object sets
a dirty-bit and the subscription is canceled. Dirty-marked
objects are actively refreshed by clients as soon as they enter
the AoI, preventing needless communication on objects that
cannot instantaneously enter the FoV. Rather than requiring
information sources to send unicast messages to all subscribers
or relying on multicast facilities of lower protocol layers, the
Torrent-like scheme that will be described in the next section
can be used for a scalable dissemination of update messages.

c) Application of Torrent Principles: The number of
users residing in a certain region of the virtual world and thus
requesting the same object and terrain data is hard to predict
and possibly massive. Thus it is clear that their distribution

as well as the maintenance of subscriptions poses scalability
problems. We particularly address a future scenario in which
clients at the network’s edges have high uplink bandwidths.
Due to the multi-tier caching scheme in combination with the
Publish/Subscribe pattern used, objects in memory as well as
unmarked objects in the disk cache are known to be up-to-date.
Furthermore, within highly populated regions this information
is available redundantly. In order to utilize these resources we
apply a distribution scheme similar to the BitTorrent protocol.
The basic idea is that each HyperVerse client makes accessible
cached information in a Torrent-like manner, i.e. data are split
into individually addressable pieces. When a user requests data
of a certain region, a number of other clients can be used to
concurrently transfer pieces of data that are already present in
their caches. For this the distributed backbone consisting of
public servers (being described in section II-B) keeps track of
the clients’ AoI. According to the interest management model
described above and by choosing an appropriate value for Λ
and using an adequate federation scheme for the backbone
service, the update frequency in individual servers can be kept
manageable.

Clients use the backbone service in order to retrieve a (size-
constrained) subset of nearby peers along with their AoIs.
Knowing that peers at least contain an up-to-date version of
objects within their AoI, a client uses this information in order
to compute the coverage of its own AoI by peer AoIs. In a first
step peers are used to retrieve meta-information on all objects
that reside in areas that are covered by peers’ AoIs. From this
information the redundancy degree of objects within different
portions of the covered area is computed based on the peers’
AoI. Pieces of objects are then retrieved concurrently from
all peers whose AoI contains the object’s position. AoIs in
low-density regions may contain portions uncovered by peers.
Objects from within such portions will be retrieved from the
backbone service which at the same time serves as initial
seed for the Torrent-based distribution of data. An optimum
peer selection strategy is still being investigated. In the current
version random peers are used although ideally the peer subset
should be chosen in a way that optimizes AoI coverage as
well as object redundancy. Without going into further detail,
a Publish/Subscribe extension to this Torrent-based scheme
can be realized by clients propagating object piece updates to
peers that have recently requested a given object. Since objects
consist of many pieces, the probability of not receiving any
piece update is comparably low and can only occur if all peers
of which the object pieces have been received are offline. If at
least some piece updates have been received, any remaining
pieces can be actively requested by updating the peer set after
a certain threshold.

B. Federated Backbone Service

As motivated earlier in this section, a two-tier P2P approach
has been chosen in order to allow for lightweight clients
and handle varying churn rates. Public HyperVerse servers
can be thought of as a kind of federated “3D Web Servers”.
Objects can be published by adding a new public server to the

36

backbone federation or by uploading them to existing servers
- their providers possibly demanding a fee for this service.
By this means, public server providers are incentivized in
a way that is similar to today’s WWW and abides existing
business models. The responsibilities of public servers consist
in tracking client AoIs and thus connecting nearby peers for a
Torrent-based distribution and a P2P exchange of movement
information. Public servers also serve as initial seeds for all
objects they contain. Initial seeds of world-specific terrain data
are redundantly and equally distributed among all servers.

It is clear that the federation scheme underlying the public
server backbone needs to be organized in a way that balances
load between them. Apart from this it must provide simple
facilities to perform range queries in order to efficiently
retrieve the peer sets of client AoIs. Although to date it is
not yet clear which of them will be actually chosen, several
promising candidate technologies have been identified. Among
them the P-Grid [1] system represents an efficient structured
overlay network based on the concept of a distributed trie.
It achieves highly efficient lookup operations and guarantees
load-balancing of storage and query load. By preserving key
order it furthermore supports range queries. Another interest-
ing fact is that approaches relying on a space-based federation
of public servers can capitalize on research stemming from the
field of mobile ad hoc networks. One federation scheme we are
currently testing for applicability is e.g. loosely based on the
distributed and scalable GRID location service [13]. Moreover
we investigate in how far techniques and methods of swarm
intelligence are applicable in order to realize a decentralized
and self-organized network of public servers. This includes the
evaluation whether decentralized control algorithms for public
servers can be combined with efficient routing protocols in
order to support the requirements mentioned above.

C. Individual Dynamic Instantiation

The Torrent-based distribution of 3D data described above
is suitable to mitigate the problem of distributing the same
object or world data to a massive number of clients result-
ing from high avatar densities in confined virtual regions.
Under such circumstances, the problem of mutual visibility
and thus exchange of motion information remains. Apart
from exhibiting a fan-in problem at clients, it also hampers
usability since from a user’s perspective it is not reasonable
to visualize an unlimited number of nearby avatars. This
problem already occurs in today’s MMOGs, so the counter-
measure of so-called instantiated sessions has been developed
in this domain. Using this technique, several separated and
dynamically instantiated “copies” of the same region are
created, each copy allowing a certain maximum number of
users. This not only improves usability but also scalability
since instances can be handled separately on machines in
the provider’s server farm. Within the HyperVerse, this is
not a desirable solution since it precludes interaction between
users residing in different instantiated sessions. Accordingly,
we investigate how a dynamic and individual instantiation
based on an avatar’s social bias can be provided. In this

context, the social bias is auto-generated information on an
avatar’s position in the social network based on its history of
interaction with other avatars. Using this information, rather
than separating instances, it is necessary to provide a dynamic
individual instance for each user in a scalable way whenever
avatar density in a certain region exceeds a certain threshold.
In each individual instance, only relevant avatars shall be
visualized, thus separating out and/or coarsely summarizing
dispensable information. Interaction across these instances is
possible since each avatar is present in individual instances
of all user’s that share a similar social bias. Non-overlapping
transitive relations are not approached at this stage though.

Extending 3D space by additional dimensions which al-
low an avatar’s social bias to be encoded as position in a
multidimensional space seems alluring. Using an appropriate
encoding, a simple Euclidean distance between these positions
could be interpreted as “social connectedness”. The interest
management scheme depicted above could then be extended to
use higher dimensional FoV and AoI sphere abstractions. Un-
fortunately it is easy to see that social relationships between an
unlimited number of users cannot be represented by positions
in any finite-dimensional metric space, since it would require
encoding a potentially unlimited amount of information in a
fixed-size position vector. The usage of non-metric topological
spaces and an appropriate definition of closeness appears to
hold the key for a scalable implementation but requires further
research.

D. Multilevel Consistency

The consistency of distributed data and state is an important
issue which needs to be addressed at the design stage of any
distributed environment. We classify consistency problems into
data consistency problems arising from data replication and
update propagation problems resulting from the distribution
of global state representations among adjacent users.

Consistency in centralized environments is comparably easy
to achieve because only a single copy of the data or state rep-
resentation exists on a central instance (server). As motivated
in section II, there are several arguments which suggest that
centralized approaches are not suitable for a global scale vir-
tual environment. Accordingly, we expect such environments
to be based on decentralized federated infrastructures. For
the sake of scalability it is hardly possible to provide strict
consistency for the whole virtual world targeting global scale
user numbers. Therefore we introduce the term world partition
representing a designated virtual region along with all users
within. Hereby the virtual world can be arbitrarily subdivided
in several world partitions which are not necessarily disjoint.
We define the weight of a world partition as a function
w : R × N → R of the region’s area and number of users
within. In order to guarantee consistency within these world
partitions, we use a multilevel consistency model. Besides the
given application scenario, the weight of a world partition is
decisive for the guaranteed consistency level. The maximum
consistency degree that can be provided is reciprocally pro-
portional to the weight of the a world partition. That is, in

37

a “lightweight” world partition we ensure higher consistency
levels than in a “heavier” one. We are confident that this
relaxation of the consistency notion is expedient for massive
virtual environments since e.g. small consistency variations
of avatars in a user’s FoV become less perceptible and thus
crucial the more avatars are visible.

III. A PROTOTYPE HYPERVERSE IMPLEMENTATION

In this section we will briefly describe the current state of
a HyperVerse prototype that has been implemented based on
the aforementioned concepts. It consists of a lightweight 3D
browser which is based on a network-aware engine capable of
retrieving, caching and rendering 3D terrain and object data
from a Web Service based backbone service. The HyperVerse
browser as well as the underlying engine serve as a prototype
reference implementation which we use to evaluate different
approaches. In order to perform “simulations” using the actual
implementation while at the same time saving resources, the
actual 3D visualization can be detached from the browser.
In this mode, the client is remotely controllable via a Web
Service. This can be used in order to create a number of
client instances on a test cluster, manage them and retrieve
measurands via a centralized controller based e.g. on real-
world mobility models that are available from the MANET
research community [12].

a) HyperVerse Browser: The HyperVerse browser is
a thin-client interactive 3D application combining concepts
known from today’s Web browsers (like e.g. Bookmarks) and
virtual globes (like e.g. the use of geo-referenced objects,
geography-based navigation, satellite imagery and topographic
height data) with an avatar-based interaction and navigation
known from MMOGs. Based on widespread and cheap game
console hardware - namely the Bluetooth-connected Nintendo
Wii controller, head-tracking facilities have been implemented.
By this means, an immersive 3D experience and fine-grained
interaction between avatars can be provided. Figure 3 shows
the user interface of the HyperVerse browser. Although we
currently use a virtual world that is based on real world topo-
graphic and imagery data, the browser does not depend on this.
The backbone service providing appropriate data, any other
virtual world that uses either a spherical or cartesian coordinate
system can be used. Communication between the browser and
the backbone service as well as other clients is based on Web
Services and defined by descriptive interfaces, thus making
the used protocol traceable and furthering interoperability. The
HyperVerse browser is available at3.

b) HyperVerse Engine: The network-aware HyperVerse
engine is based on Microsoft DirectX and the .NET framework
and is capable of rendering XML-based Collada4 models.
Being a powerful and wide-spread intermediate format, Col-
lada is most prominently used as a 3D inlet of the Google
Earth KMZ4 format with a large pool of available models.
Furthermore the engine supports the rendering of SRTM5

3http://hyperverse.informatik.uni-trier.de
4http://collada.org
5http://www2.jpl.nasa.gov/srtm

Fig. 3. HyperVerse Browser Application

terrain, Blue Marble6 as well as Landsat7 topographic imagery
data. It contains basic dead reckoning technologies for real-
time rendering of object and avatar movement in the face of
network delay, basic geodetic mathematics utilities as well
as an implementation of the space-based interest management
model and the caching scheme described in section II-A.

c) HyperVerse Backbone Service: Since candidate tech-
nologies for the federated backbone service are currently under
investigation, for the time being only a simple Web Service
based Tracker and initial seed service has been implemented.
It serves real-world topographic and imagery data in different
levels of detail as well as object data. According to the Torrent-
scheme described in section II it also keeps track of client AoIs
and is used by the HyperVerse browser in order to retrieve
peers whose avatar’s AoIs subtend that of the local avatar.

IV. RELATED WORK

Similar to our notion, [14] claims that peer-to-peer archi-
tectures are suitable for supporting distributed virtual environ-
ments (DVE). In order to investigate this type of architectures
and to simulate large-scale DVEs in an efficient way, the
authors propose a distributed simulation platform that provides
appropriate performance metrics and contains all the elements
involved in real DVE simulations. Techniques resembling our
Torrent-based data distribution have been introduced to 3D
virtual environments by [8]. The authors propose the P2P
3D Streaming framework FLoD. It allows clients within a
virtual environment to retrieve relevant data from nearby
clients while minimizing perceived transmission delay. An
important contribution of FloD is its support for progressive
meshes and textures by defining so-called base and refinement
pieces. By prioritizing base pieces, the rendering process
can start before all object pieces have been received. The
overlay topology of FloD is based on the Voronoi-based VON
[7] scheme. Evaluations of FloD have shown that P2P 3D
streaming is much more scalable than client-server approaches.
Solipsis [9] is another massively shared P2P virtual reality
system that addresses global-scale user numbers. In order to
tackle the scalability problem and heterogeneous access device

6http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
7http://landsat.gsfc.nasa.gov/

38

capabilities, it provides adjustable data flows based on varying
awareness radii.

Similar to our notion of providing consistency within virtual
environments, Myriad [15] permits transient inconsistency,
thus relaxing resource requirements in collaborative virtual
environments. [10] considers consistency aspects in distributed
virtual environments and introduces an approach based on
global timestamps. In [6] multilevel consistency addressing the
replication techniques of world data is introduced. CyberWalk
[4] is a DVE using an on-demand transmission approach
for the distribution of the virtual environment to the clients.
Similar to FloD, CyberWalk uses a multiresolution caching
mechanism that reduces model transmission and rendering
times by employing progressive models. Network delay is
mitigated by providing a caching and prefetching mechanism.
Moreover, it allows a client to continue to operate, at least
partially, when a network connection is unavailable.

The paper [3] examines an architecture that supports per-
sistent game state in public server based multiplayer games.
In opposite to our notion, public servers do not provide a
single virtual environment but are separated in the sense that
they provide local per-server virtual worlds for a very limited
number of users. All servers share certain persistent game
items and character capabilities which are contributed and
controlled by the game publisher in a centralized fashion.

V. CONCLUSION AND FUTURE WORK

In the course of this paper we presented key concepts of
the HyperVerse project in which we investigate how global-
scale persistent virtual environments can be provided. In order
to guarantee persistent information without putting scalability
at stake, we have chosen to apply a two-tier hybrid P2P
approach by combining a WWW-like federated public server
backbone with a scalable Torrent-based data distribution.
While our approach resembles the one described in [8], the
main difference is the abdication of highly structured client
overlay topologies. Since we explicitly address a scenario with
Browser-like clients, we assume churn rates to be much higher
than that of any prevalent Peer-to-Peer applications. In order
to mitigate this problem, we use a highly structured federated
backbone acting as Torrent Tracker and interconnecting clients
to a loosely structured and highly churn resilient overlay.
Another noticeable difference is that due to the propagation
of peers’ AoIs information, clients are able to locally decide
which peers contain required data pieces without having to
actively send requests to nearby clients.

The main contribution of introducing a Torrent-based ap-
proach to massive virtual environments is the mitigation of
Flash Crowds - a spontaneous surge of interest in a certain
region of the HyperVerse. The BitTorrent protocol has proven
to successfully address this problem in the context of distribut-
ing large files in today’s WWW. By means of considering
virtual geography and locality aspects that are inherent to
virtual worlds, we argued that massive virtual environments
can benefit from a Torrent-based data distribution much in the

same way. In order to overcome the Flash Crowd related client-
side fan-in problem, we intend to use a dynamic instantiation
approach that is based on the relationship between users and
does not preclude interaction across instances.

While we cannot yet provide a definite answer to the
question which federation scheme shall be used for the mas-
sively distributed public server backbone service presented
in section II-B, we identified some candidate technologies
as well as general directions of research. As a next step,
some of these technologies need to be evaluated. Being a
promising approach, a P-Grid-based backbone service is being
implemented and will be available soon for further evaluations.
In the course of this paper we have also given a brief overview
of our approach to consistency handling which is characterized
by a twofold relaxation of the consistency notion. We argue
that this relaxation is suitable for massive virtual environments
in the sense that it allows a minimization of sensible effects
while being conducive to scalability.

REFERENCES

[1] K. Aberer. P-Grid: A self-organizing access structure for P2P informa-
tion systems. Sixth International Conference on Cooperative Information
Systems (CoopIS 2001), 2172:179–194, 2001.

[2] A. Al-Hamra, A. Legout, and C. Barakat. Understanding the properties
of the bittorrent overlay. Technical report, INRIA Sophia Antipolis,
France, 2007.

[3] C. Chambers, W. chang Feng, and W. chi Feng. Towards public server
mmos. In Proceedings of 5th ACM SIGCOMM workshop on Network
and system support for games (NetGames ’06), page 3, New York, USA,
2006.

[4] J. H. P. Chim, R. W. H. Lau, H. V. Leong, and A. Si. Cyberwalk: a web-
based distributed virtual walkthrough environment. IEEE Transactions
on Multimedia, 5(4):503–515, 2003.

[5] B. Cohen. Incentives build robustness in bittorrent, 2003. cite-
seer.ist.psu.edu/cohen03incentives.html.

[6] J. C. de Oliveira. Issues in large scale collaborative virtual environments.
http://citeseer.ist.psu.edu/oliveira01issues.html.

[7] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: a scalable peer-to-peer
network for virtual environments. Network, IEEE, 20(4):22–31, July-
Aug. 2006.

[8] S.-Y. Hu, T.-H. Huang, S.-C. Chang, W.-L. Sung, J.-R. Jiang, and B.-
Y. Chen. Flod: A framework for peer-to-peer 3d streaming. In The
27th Conference on Computer Communications (IEEE INFOCOM ’08),
2008.

[9] J. Keller and G. Simon. Solipsis: A massively multi-participant virtual
world. In PDPTA, pages 262–268, 2003.

[10] S.-J. Kim, F. Kuester, and K. H. Kim. Towards enhanced data
consistency in distributed virtual environments. volume 5006, pages
436–444. SPIE, 2003.

[11] J. Kubiatowicz. Extracting guarantees from chaos. Commun. ACM,
46(2):33–38, 2003.

[12] J.-Y. Le Boudec, S. PalChaudhuri, and M. Vojnovic. Perfect simulations
for random trip mobility models. Proceedings of the 38th Annual
Simulation Symposium 2005.

[13] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A
scalable location service for geographic ad hoc routing. In Proceedings
of the 6th annual international conference on Mobile computing and
networking (MobiCom ’00), pages 120–130, New York, USA, 2000.

[14] S. Rueda, P. Morillo, and J. M. Orduna. A Peer-To-Peer Platform for
Simulating Distributed Virtual Environments. In Proceedings of the 13th
International Conference on Parallel and Distributed Systems (ICPADS
’07), 2007.

[15] B. Schaeffer, P. Brinkmann, G. Francis, C. Goudeseune, J. Crowell,
and H. Kaczmarski. Myriad: scalable vr via peer-to-peer connectivity,
pc clustering, and transient inconsistency. In Proceedings of the ACM
symposium on Virtual reality software and technology (VRST ’05), pages
68–77, New York, NY, USA, 2005. ACM.

39

Towards an Authentication Service for Peer-to-Peer
based Massively Multiuser Virtual Environments

Arno Wacker∗, Gregor Schiele†, Sebastian Schuster∗, and Torben Weis∗

∗University of Duisburg-Essen
Duisburg, Germany

{arno.wacker|sebastian.schuster|torben.weis}@uni-due.de

†University of Mannheim
Mannheim, Germany

gregor.schiele@uni-mannheim.de

Abstract— In this paper we propose a distributed authenti-
cation service for peer-to-peer (P2P) based massively multiuser
virtual environments. Such a service is necessary to provide
security, e.g. preventing a user’s account being stolen or the
user being impersonated. We describe two variants of our
authentication service. The first uses certificates and a central
certification authority to ensure the validity of user-generated
public keys. These keys are then used to sign messages sent by
the users’ peers. The second variant distributes the users’ public
keys in the P2P network and uses quorums to verify them.

I. INTRODUCTION

Massively multiuser virtual environments (MMVEs) allow
a large number of users to participate in a shared virtual
environment via the Internet. Security is a crucial requirement
for such systems, to guarantee their smooth operation [1].
Otherwise, users may e.g. pose as somebody else or steal other
users’ data. This is especially true since the participants of
a large scale system typically do not know each other and
therefore cannot trust each other.

To provide security, we first must guarantee message au-
thenticity, i.e. a user must be able to identify the sender of
a message reliably. Building upon this, other goals can be
realized, e.g. data confidentiality or integrity.

In this paper we discuss how to provide message authen-
ticity in MMVEs. We restrict our discussion to peer-to-peer
(P2P) based systems. In such systems, the virtual environment
is provided and managed by the participating users’ computers
themselves, instead of a centralized server, as in a client/server-
based MMVE.

Our approach is based on certificates and signed messages.
We depict two variants. First we discuss a straight forward
approach using a Certification Authority (CA). This approach
builds on well known techniques. Secondly, we propose a
novel approach that is based on replicating public keys in the
P2P network. This approach is still work in progress. However,
in our opinion it offers a lot of potential for future research
activities.

The paper is structured as follows. First, we present our
system model and introduce two types of MMVEs, which need
to be distinguished when developing an authentication service.
After that we discuss requirements for our authentication
service. We then provide an overview of related work and

present our approach. Finally, we offer a short conclusion and
some thoughts about future work.

II. SYSTEM MODEL

We define an MMVE as a persistent virtual environment that
is shared by a large number of users worldwide. The number
of users is a priori undetermined and may change dynamically.
A P2P-based MMVE is a special kind of MMVE that is
executed cooperatively by all users’ computing devices, called
peers. Each device is connected to a common communication
network, e.g., the Internet. Using this network, the peers
form a connected overlay network, the so-called P2P (over-
lay) network. To participate in the MMVE, a user activates
his device and starts the preinstalled MMVE software. The
software logs into the P2P network and the user can start
operating in the MMVE. Each user is represented in the
MMVE by a special character, called his avatar. Conceptually,
our approach is able to handle multiple avatars per user.
However, in this paper we restrict each user to one avatar and
use both terms interchangeably. This makes the description of
our approach easier to understand. To operate in the MMVE,
the user directs his avatar to perform actions for him, e.g.
moving or interacting with other users’ avatars. Each activity
is distributed to other peers and processed by them, e.g. by
updating the state of the MMVE. After the user is done, he
stops the software and deactivates the device.

Our approach assumes the existence of an underlying struc-
tured P2P network that can be used to store and retrieve
data, e.g. a distributed hash table (DHT). The P2P network
must support four operations, discussed below. The operation
storeObject(pos, data) stores a data item at a given
(logical) position in the P2P network. Using the position,
the P2P network determines a set of peers and stores the
data item at them. The specific algorithm to do so depends
on the used P2P network. Different positions are mapped to
different peer sets, if possible, to distribute the data evenly.
Due to peer fluctuations, the peers responsible for a given
position may change over time. We assume that the P2P
network detects this and relocates the involved data items
automatically. The reason for using a replicated storage is to
ensure that data items are persistent. Otherwise, when a peer
is lost unexpectedly, data may be lost. We assume that the

40

P2P network contains consistency between all replicates of
a given data item. With retrieveObject(pos) we can
retrieve a data item from the P2P network. The parameter
pos specifies the logical position of this item in the P2P
network. The network automatically resolves the position to a
set of peers and retrieves the data item from them. To delete
a data item stored at a given logical position, the operation
deleteObject(pos) can be used. It determines all peers
saving the data item and instructs them to delete it. These
three operations realize a simple distributed data space. In
addition, the P2P network allows peers to send data messages
to each other, using the send(peer, data) operation.
It sends a given data item reliably to the specified peer. In
the peers@play project we are developing a P2P network
that fulfills all properties discussed above. This network can
be used to realize our approach. Its exact implementation is
beyond the scope of this paper.

III. OPEN VS. MODERATED MMVES

We distinguish two types of MMVEs, moderated and open
ones. A moderated MMVE is operated by a specific system
operator. The operator is responsible for managing the MMVE
and its participants. As an example, the operator decides
which user may participate in the MMVE. To do so, users
are normally expected to register with the operator before
entering the MMVE. The operator may also decide to remove
a user from the MMVE, e.g. in case of the user violating the
license agreement. Clearly, all users have to trust the operator.
A typical example for this type of MMVE is a commercial
system, e.g. an online game.

An open MMVE works without a specific operator, i.e. the
system is operated cooperatively by its participants. There is
no single entity responsible for the system or trusted by all
users. Access to the system is free for all. A typical example
for such an MMVE is a non-commercial online social network.

IV. REQUIREMENTS

In the following section we analyze the requirements that
an authentication service (AS) for P2P-based MMVEs must
fulfill.

1) Decentralized operation: The first requirement for au-
thentication in P2P-based MMVEs is decentralization. The AS
must allow users to login into the MMVE and to operate within
it without accessing a centralized server. This server could
become a bottleneck for the system performance and a single
point of failure. In addition, someone would have to operate
the server, making this approach unsuitable for open MMVEs.

2) Privacy: With respect to privacy, the authentication must
make sure that other users of the MMVE are not able to derive
knowledge about the identity of other users. Note that an
MMVE developer/operator may decide to make the identity
of its users available to others. This is an MMVE-specific
design decision and does not influence the AS requirements.

3) Availability: Clearly, authentication is a crucial service
for most MMVE. If the AS is not available, no user can log
into the MMVE. This may lead to users getting frustrated with
the MMVE and eventually abandoning it and must therefore
be avoided.

V. RELATED WORK

Security has been widely recognized as a major concern in
MMVEs. However, most researchers concentrate on designing
cheat-proof algorithms, e.g. [2], [3]. All of these approaches
make heavy use of cryptographic functions. They implicitly
assume a public key infrastructure to be present delivering
means to authenticate the a priori unknown communication
partners. For example Rieche et al. [4] explicitly state that
they intend to use an existing server for accounting in their
P2P MMVE infrastructure.

Fully distributed key management infrastructures can be
found in the area of P2P and ad-hoc networks. Threshold
cryptography [5] is a way to realize such a distributed CA.
Out of a group of n nodes, at least k are necessary to
authenticate other nodes. It shares some similarities with
our approach basing decisions on trustworthiness of multiple
nodes. However, there is no guarantee that k out of the n
nodes are present at a specific time. Furthermore, it is not
clear how to choose n and k and how to form subgroups.
Choosing n as all nodes of the network to fully distribute the
CA is unfeasible, due to the huge network size and its dynamic
change at runtime.

Another approach to distribute authentication in an ad-hoc
network is forming a web of trust [6], similar to PGP. Here,
no single trusted authority exists. Instead, everybody can issue
certificates showing that he believes in the identity of someone
else. Thus, trust chains can be built to verify identities. Metrics
like counting trust chains can be used to further strengthen the
belief in one’s identity. However there is no guarantees that a
trust chain exists at all. At the same time, the verification of
a nodes identity is mixed with its ability to authenticate other
nodes. Consequently, misbehaving nodes can hurt the whole
system by issuing lots of false certificates.

Finally, multiple approaches in P2P systems are based on
reputation measuring the trustworthiness of nodes e.g. [7].
Reputation of a node changes according to other nodes’
experiences with that node. This is a distributed voting mech-
anism, and could be used to build up trusted peer-based CAs.
However, it relies on authentication of a node’s identity and
binding its identity to its reputation in the first place.

VI. AUTHENTICATION IN MODERATED MMVES

After discussing our requirements, we now present our
approach for authentication in MMVEs. We start with our
first variant, which is tailored towards moderated MMVEs.
In Section VII we propose another variant for open MMVEs.

Our first approach is based on three parts: (1) peers signing
their messages, (2) certificates to validate signatures, and (3)
the MMVE operator issuing certificates to users at registration
time.

41

Before any user is able to access the MMVE, the MMVE
operator sets up a CA that is accessible for all potential users,
e.g. using the WWW. A CA is a trusted system service for
generating certificates. The operator can use any existing CA
software for this. He creates an asymmetric key pair for the
CA, i.e. a public (K+

CA) and a private key (K−
CA). The public

key is then embedded into the MMVE software and distributed
with it. Thus, the CA’s public key is well known to every peer
in the system. When a user wants to register for the MMVE,
he contacts the operator’s CA and registers himself for the
MMVE. During this registration, the user creates an MMVE
identifier (IDU) and generates an asymmetric key pair (K+

U ,
K−

U) for it. The identifier can be any arbitrary and sufficiently
long string or number, which cannot be correlated with the
real identity of the user. One way to create it is to hash the
email address of the user with a secure hash function, i.e.
IDU = Hash(user@domain.com). Other users in the P2P
network will only see IDU and never the real identity of the
user. Hence, with this step the privacy requirement is fulfilled.

operator

P2P network

user
device

(a)

1 2

operator

P2P network

user
device

(b)

3

operator

P2P network

(c)

4

operator

P2P network

user
device

(a)

1 2

operator

P2P network

(b)

3

Fig. 1. Authentication in a moderated P2P-based MMVE

After the generation of these values the user finishes his
registration by sending a signature request to the CA, i.e.
message (1) in Fig. 1(a):

Message1 : U → CA : {IDU ,K+
U }K+

CA
(1)

Clearly, the system operator (i.e. his CA) can choose any
appropriate means to identify the user. If the system operator
needs to guarantee the identity of the user, a valid external cer-
tificate on the email address of the user could be used. When
the user fulfills the registration requirements (e.g. payment was
received) the operator issues a certificate for the new MMVE
identity, i.e. message (2) in Fig. 1(a):

Message2 : CA → U : {IDU ,K+
U , ts, tv}sign(CA) (2)

where {m}sign(X) = m|{Hash(m)}K−
X

for any message
m. This signed message includes the MMVE identity (IDU),
the corresponding public key (K+

U) and a period of validity
given with the two time marks ts and tv . Clearly, the CA
could include any additional data in the certificate – e.g. a
serial number – if this is required by the MMVE.

After that, the user can log into the MMVE. To do so, no
additional communication is needed. Instead, the user’s peer

signs all its messages with the user’s private key, i.e. message
(3) in Fig. 1(b):

Message3 : U → peer : {m}sign(U) (3)

Upon receiving such a message, each peer checks if it knows
the sender’s certificate. Otherwise, it requests the certificate
at the sending peer. Once the receiver knows the certificate,
it validates the message signature using the sender’s public
key. If the signature is valid, the peer accepts the message.
Otherwise the message is simply ignored, denying that peer
the participation in the network.

Note that this approach resembles a classical certificate-
based approach very closely. The main differences are that
the MMVE operator is used to provide the CA instead of an
external CA, e.g. VeriSign. In addition, each certificate is also
a ticket, i.e. it allows the owner of the certificate to enter the
network and participate in the MMVE. Our certificates have
a restricted lifetime, similar to most other certification-based
approaches. The duration of the certificate lifetime depends on
the provider’s payment model. If users have to pay to enter
the MMVE, e.g. using a monthly fee, the certificate should be
valid for the paid duration. After that, a new certificate must
be issued. Clearly, this should be transparent for the user, i.e.
the certification renewal must be done automatically.

In certain cases it may be necessary to remove a user from
the MMVE while his certificate is still valid. This may be the
case if the user violates the usage terms or if his account is
stolen. To remove a user, his certificate is revoked. A possible
approach for revocation is to let each peer check with the CA if
the certificate is still valid. However, this would put additional
load on the CA and would require it to be available to perform
the check. Therefore we propose the usage of revocation list
messages, containing the current revocation list. The system
operator creates this list and signs it with his private key. Then
the list is send to the P2P network e.g. via (authenticated)
flooding. Each (non-compromised) peer needs to store the
revocation list locally. To identify updates a simple version
counter could be used. With this kind of revocation list we
just need to ensure, that the list is never lost, i.e. it needs to
be replicated consistently. This is done automatically by our
assumed underlying P2P network (see Section II).

This approach fulfills the requirements given in Section IV.
It is decentralized since peers can authenticate themselves
against other peers at runtime without contacting a centralized
system component. To do so, they only have to sign their
messages. The CA is only needed at registration time to create
a new certificate. If the CA fails, no new users can register
for the MMVE. However, already registered users can keep
logging into the MMVE and use it. As long as two peers are
able to communicate with each other, they can authenticate
against each other. Thus, the approach does also fulfill our
third requirement, availability. Finally, privacy is provided by
using a secure hash function to create the user’s identifier
IDU . For authentication, only IDU is send to other peers and
only the MMVE provider can link IDU to the user’s identity.

42

VII. AUTHENTICATION IN OPEN MMVES

Our approach for authentication in moderated MMVEs is
based on the system operator providing a trusted CA to
validate public keys. In an open MMVE, no system opera-
tor exists. Therefore, another approach is needed. An easy
modification is to use an external globally available CA, e.g.
VeriSign, to provide the needed certificates. In the future,
many users may have such a certificate anyway, e.g. for
electronic commerce. However, such CAs usually include the
user’s identity into the certificate. This violates our privacy
requirement. In addition, all users would need a certificate
issued by the external CA, resulting in addition costs.

We omit using a central CA and propose a different ap-
proach to validate public keys. The basic idea is to adapt
the registration process such that instead of a certificate being
created, the public key is stored at a number of different peers
in the P2P network.

operator

P2P network

user
device

(a)

1 2

operator

P2P network

user
device

(b)

3

operator

P2P network

(c)

4

operator

P2P network

user
device

(a)

1 2

operator

P2P network

(b)

3

P2P network

user
device

(a)

1

P2P network

(b)

2

3

Fig. 2. Authentication in an open P2P-based MMVE

Similar to the registration in moderated MMVEs, a new user
first has to create an MMVE identifier IDU and generate an
asymmetric key pair (K+

U , K−
U). The public key K+

U must be
stored in a way such that (1) it cannot be tampered with and (2)
all other peers can retrieve it when needed. We cannot assume
that any single peer is secure. Therefore, we propose to store
K+

U on multiple peers in the P2P network. When we later want
to retrieve the public key, we use a majority voting mechanism
to identify modified entries. We introduce the security level s
to denote the number of manipulated entries that are tolerated
by our approach. To tolerate s such manipulated entries, we
need to store the data on at least (2s + 1) different peers.

An overview of this approach is given in Fig. 2. Initially,
the new peer stores its user’s public key at (2s + 1) different
positions (see (1) in Fig. 2(a)). This registers the user in the
MMVE. After that, the user can log into the MMVE and
operate in it. Whenever his peer has to send a message to
another peer, it signs the message with the user’s private key
(see (2) in Fig. 2(b)). To check the signature, the receiver
contacts the P2P network and retrieves the corresponding
public key from all (2s+1) different positions in the network
(see (3) in Fig. 2(b)).

In the following we describe our approach in more detail
and provide some pseudo code for it.

A. Registration

The algorithm for registering a new user is given in Al-
gorithm 1. It must be executed before the user logs into the
MMVE for the first time.

Algorithm 1 Registering in open MMVEs
1: IDU = Hash(user@domain.com);
2: (K+

U , K−
U) = new Key(); // Generate a new key-pair

3: for i = 1 to (2s + 1) do
4: posi = Hash(IDU |i); // Calculate DHT position
5: storeObject(posi,(IDU ,K+

U));
6: end for

Lines 1–2 show the creation of a new MMVE identity
and the generation of a new asymmetric key pair. After
that, the for-loop (see Line 3–6) stores the public key at
(2s+1) different positions in the P2P network. Each individual
position is calculated by hashing the MMVE identity IDU

concatenated with a unique number (see Line 4). After that,
we store the public key K+

U and the corresponding IDU using
the operation storeObject (Line 5).

Note that if the P2P network stores different positions posi

on the same peer, the security of our approach decreases.
By compromising this peer, an attacker can gain control over
multiple copies of the public key. In our system model, we
assumed the P2P network to distribute positions evenly on the
available peers. Therefore, the probability for such a situation
to occur decreases with the number of peers in the network.

B. Key Retrieval

When a peer sends a signed message to another peer , the
receiver has to check the message signature. To do so, it first
checks if it already knows the sender’s public key. If not, the
receiver executes Algorithm 2.

Algorithm 2 Retrieving a public key
1: // Retrieves the public key for a given ID
2: items[] = new array[2s + 1];
3: for i = 1 to (2s + 1) do
4: posi = Hash(IDU |i); // Calculate DHT position
5: items[i] = retrieveObject(posi);
6: end for
7: item = majority(s,items);
8: return item.K+

U ;

Since we cannot rely on a single peer to provide the valid
public key of a user, we have to collect the public key from
all (2s+1) positions and perform a majority voting. With the
for-loop (Line 3–6) we retrieve each copy of the previously
stored public key and store it in the local array items[] (Line
5). In case there are different answers, a simple majority is
used (Line 7), i.e. at least s keys need to be equal in order
to return the public key (Line 8). If no majority of s can be
achieved, we cannot decide which public key is correct. In this
case, the received message is discarded.

43

C. Key Updates

In certain cases, a user might want to update his public
key, e.g. because he suspects that it might be compromised. In
addition, the MMVE might use relatively short keys to achieve
higher encryption efficiency. In this case, the keys should be
exchanged regularly. Finally, if the user decides that he will
not use the MMVE anymore, he should be able to remove his
registration from the P2P network. To update a registered key,
Algorithm 3 can be used.

Algorithm 3 Updating a public key item

1: // Received a message m = {IDU ,K ′+
U }sign(U)

2: // K ′+
U : new (updated) public key

3: // To be stored at position pos
4: // Note: {m}sign(X) = m|{Hash(m)}K−

X

5: // Note: m.sig(X) = {Hash(m)}K−
X

6: if localStore[pos] != null) then
7: kpub = localStore[pos].K+

U ;
8: if (Hash(IDU ,K ′+

U) == {m.sig(U)}kpub) then
9: if K ′+

U != null then
10: localStore[pos] = (IDU ,K ′+

U);
11: else
12: localStore[pos] = null;
13: end if
14: end if
15: end if

When the user wants to update his public key, he prepares
an update message and sends it to all peers holding a copy
of his public key. These peers are determined similarly to the
original registration (see Algorithm 1). An update message
contains the user’s MMVE identifier IDU and the new public
key K+

U . It is signed using the old public key. Upon receiving
an update message, each peer first checks if it has an entry at
the specified position (Line 6). If this is the case, the stored
public key is used to validate the signature of the message
(Line 8). If the signature is valid, the peer updates the entry
(Line 10). Otherwise, the update is denied. To allow deleting
entries, the peer checks if the provided new key equals null
(Line 9). In that case, instead of updating the key, the peer
removes the entry from its local storage (Line 12).

Note that while this algorithm is executed, peers trying to
retrieve the public key may not be able to constitute a valid
quorum, if some copies are compromised. This is resolved
once the algorithm terminates for all copies.

D. Discussion

Our approach for authentication in open MMVEs fulfills
all three requirements. It is completely decentralized, both at
registration time and during the MMVE execution. Similar to
our approach for moderated MMVEs, privacy is provided by
using only hashed user identities. Hence, the identity of other
users is kept hidden. Since the public key is stored in the
P2P network, it is always accessible. Thus, the AS is always
available, fulfilling our third and last requirement.

For our approach to work, a peer must be connected to
at least (2s + 1) other peers in the P2P network. Otherwise,
during the first connection of a new user, the neighboring peers
could cheat about its identity, i.e. mount a so called man-in-
the-middle attack. One way to guarantee this, is to organize
the P2P network such that it forms a (2s+1)-connected graph.
In such a graph, there are always (2s+1) paths between each
peer, making attacks impossible if less than (s + 1) peers are
compromised. We already applied this approach successfully
in wireless sensor networks [8] and are planning to transfer
these results to MMVEs.

VIII. CONCLUSION AND FUTURE WORK

In this paper we proposed an AS for P2P-based MMVEs.
We provided two variants. The first is tailored towards moder-
ated MMVEs. It relies on the MMVE operator offering a CA to
issue certificates to users of the MMVE. At runtime, messages
are signed with the users’ public keys and validated using their
certificates. This approach is relatively straight forward and
can be applied with little effort. However, it is not applicable
to open MMVEs, since they do not have an operator. Our
second variant is able to operate without an operator. Instead
of a CA issuing certificates, public keys are stored redundantly
in the P2P network and checked using quorums. This approach
is able to tolerate up to s compromised copies of the stored
public key. If an attacker is able to gain control over more
copies, he can modify the public key and impersonate another
user. Therefore, the MMVE must use a sufficiently high
security level s.

Clearly, the usage of asymmetric cryptography on each
message is very resource intensive. The straight forward
improvement is to establish a symmetric session key at the
beginning of the communication. This key can then be used
for creating message authentication codes for each message.
With the same method also confidentiality can be achieved.

At the moment we are developing a prototypical implemen-
tation of our approach for moderated MMVEs. Our approach
for open MMVEs is still work in progress and must be refined
and analyzed in more detail with respect to different possible
attacks. As an example, until now we assumed that the P2P
network is able to relocate data items securely between peers,
when the responsibility for a given logical position in the
network changes. We plan to analyze this assumption and
investigate adequate mechanisms to achieve it.

REFERENCES

[1] G. Schiele, R. Sueselbeck, A. Wacker, J. Haehner, C. Becker, and T. Weis,
“Requirements of peer-to-peer-based massively multiplayer online gam-
ing,” in Proceedings of the Seventh International Workshop on Global
and Peer-to-Peer Computing, 2007.

[2] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low latency and
cheat-proof event ordering for peer-to-peer games,” in NOSSDAV ’04:
Proceedings of the 14th international workshop on Network and operating
systems support for digital audio and video. New York, NY, USA: ACM,
2004, pp. 134–139.

[3] A. B. Corman, S. Douglas, P. Schachte, and V. Teague, “A secure
event agreement (SEA) protocol for peer-to-peer games,” in The First
International Conference on Availability, Reliability and Security (ARES).
IEEE Computer Society, 2006, pp. 34–41.

44

[4] S. Rieche, K. Wehrle, M. Fouquet, H. Niedermayer, L. Petrak, and
G. Carle, “Peer-to-peer-based infrastructure support for massively mul-
tiplayer online games,” in 4th Annual IEEE Consumer Communications
and Networking Conference (CCNC 2007), Las Vegas, Jan. 2007.

[5] Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” in CRYPTO ’89:
Proceedings of the 9th Annual International Cryptology Conference on
Advances in Cryptology. London, UK: Springer-Verlag, 1990, pp. 307–
315.

[6] J.-P. Hubaux, L. Buttyn, and S. Capkun, “The quest for security in mobile
ad hoc networks,” in Proceeding of the ACM Symposium on Mobile Ad
Hoc Networking and Computing (MobiHOC), 2001.

[7] A. Singh and L. Liu, “Trustme: Anonymous management of trust re-
lationships in decentralized P2P systems,” in Peer-to-Peer Computing,
N. Shahmehri, R. L. Graham, and G. Caronni, Eds. IEEE Computer
Society, 2003, pp. 142–149.

[8] A. Wacker, T. Heiber, and H. Cermann, “A key-distribution scheme for
wireless home automation networks,” in Proceedings of IEEE CCNC
2004, IEEE Communications Society. Las Vegas, Nevada, USA: IEEE,
January, 5-8 2004.

45

Index of authors

Anceaume, Emmanuelle, 29

Becker, Christian, 14

Botev, Jean, 34

Carle, Georg, 9

Esch, Markus, 34

Fouquet, Marc, 9

Frey, Davide, 29

Hu, Shun-Yun, 3

Huang, Guan-Yu, 3

Höhfeld, Alexander, 34

Ito, Dai, 19

Jiang, Jehn-Ruey, 3

Kermarrec, Anne-Marie, 29

Le Fessant, Fabrice, 29

Niedermayer, Heiko, 9

Nishide, Ryo, 19

Ohnishi, Masaaki, 19

Piegay, Romain, 29

Rieche, Simon, 9

Royan, Jérôme, 29

Schiele, Gregor, 14, 40

Schloss, Hermann, 34

Scholtes, Ingo, 34

Schuster, Sebastian, 40

Steed, Anthony, 24

Sueselbeck, Richard, 14

Teifel, Timo, 9

Triebel, Tonio, 14

Ueshima, Shinichi, 19

Wacker, Arno, 14, 40

Wehrle, Klaus, 9

Weis, Torben, 40

Zhu, Bingshu, 24

46

	Foreword
	Program committee
	Scalable Reputation Management for P2P MMOGs, Guan-Yu Huang, Shun-Yun Hu, Jehn-Ruey Jiang
	Clustering Players for Load Balancing in Virtual Worlds, Simon Rieche, Klaus Wehrle, Marc Fouquet, Heiko Niedermayer, Timo Teifel, Georg Carle
	Consistency Management for Peer-to-Peer-based Massively Multiuser Virtual Environments, Gregor Schiele, Richard Sueselbeck, Arno Wacker, Tonio Triebel, Christian Becker
	Data Aggregation Method for View Range Computation on P2P-based VCS, Ryo Nishide, Dai Ito, Masaaki Ohnishi, Shinichi Ueshima
	An Implementation of a First-Person Game on a Hybrid Network, Anthony Steed, Bingshu Zhu
	Solipsis: A Decentralized Architecture for Virtual Environments, Davide Frey, Jérôme Royan, Romain Piegay, Anne-Marie Kermarrec, Emmanuelle Anceaume, Fabrice Le Fessant
	The HyperVerse - Concepts for a Federated and Torrent Based "3D Web", Jean Botev, Markus Esch, Alexander Höhfeld, Hermann Schloss, Ingo Scholtes
	Towards an Authentication Service for Peer-to-Peer based Massively Multiuser Virtual Environments, Arno Wacker, Gregor Schiele, Sebastian Schuster, Torben Weis
	Index of authors

