r View Range
sed VCS

Graduate School of Informatics,
Kansail University

Ryo Nishide, Dai Ito,
Masaaki Ohnishi, Shinichi Ueshima

Table of Contents

Introduction of VCS Systems

P2P-based VCS as a Scalable VCS
Characteristics of GUI Construction for peers
Avatar Density and Network Congestion Problem
Proposed Method and Data Structure

Evaluation of our Method

Related Works

Application Fields

Conclusion

Introduction

= Virtual Collaborative Space (VCS) System s
gal nlng fOCUS recently B. Damer, ACM interaction, 2007

o System with a set of interactive entities as avatars on
virtual space

= Users control their avatars from terminals for walk-through
in space

= Users perform interactions by sending messages to other
users in virtual space

Examples of VCS Systems:

Second Life (Linden Lab) Dlgltal Campus (Our prolect)

Recent Works on VCS Systems

Most VCS systems built in C/S model
C/S-based VCS systems lack Scalability

o excessive cost for servers due to the increase of users

Recently, some works on P2P-based VCS systems have

been introduced [reiated works

S.-Y. Hu, et al., IEEE Network, 2006

B. Knutsson, et al., IEEE Comp. and Comm. Societies, 2004
Y. Kawahara, et al., IEEE ICCS, 2002

S. Rueda, et al., IEEE VR Conference, 2007

o These works focus on...
= Network scalability with respect to number of users
m System scalability for system maintenance or spatial extension

= Distributive data management by space partitioning, and allotment
of partitioned space to nodes

o We focus on system scalability

Characteristics for
VCS Systems

= Common Characteristics for constructing a GUI

o Each userrequires only the local data of its avatar’s
surroundings to generate a view

m Types of data streaming on VCS:
o Video/audio live streaming

o Avatar/object data streaming €— \We focus on these data
= Avatar/object location, movement, action: (location, state) data

Aggregation of
Local Data for P2P-based VCS

In P2P system, each terminal aggregates required data from the
surroundings to construct its own GUI

o For C/S system, server provides necessary local data for each client individually

Necessary to generate a view by disseminating/aggregating the spatial data
to/from terminals of surrounding avatars

Processes of user’s terminal
o Other terminals to send their (location, state) data
o To receive data from the terminals of nearby avatars

Notations for right figure:
o & Avatar g
o R(g): View range of avatar a;

o r:radius of view range (Common size, shape)

a,, 4, in the view range of each other
o a, 8, requires data of each other mutually

Resultantly,
o Each terminal can obtain its necessary local data R(ay)
o Data can be delivered to nodes without requesting them

R(a;)

Our Previous Works

Our past proposals

3D VCS Prototype: Digital Campus (C5 2004)

Incremental construction of P2P Delaunay Network for VCS

(C5 2005)

= Employ a well-known Delaunay Diagram in computational geometry based on
the adjacency of avatars’ locations
O Nodes: avatars controlled by users’ terminals

m Characteristics

O Autonomous and Distributive Generation: Nodes cooperatively generate Delaunay
Network autonomously and distributively

O Low Degree: Average number of node degree is approx. 6
O Locality connections: Nodes are connected locally.
(Easy to aggregate data from surrounding nodes)

7 5 e Tvs ity

Digital Campus

P2P Delaunay Network

Problems for
P2P Delaunay Network

Nodes within the view range increase
o Data transfer delay: Increase of number of hops
o Network congestion: Data congestion to nodes

o V1

Combination of two methods

as a solution

o Data Transfer delay
m Probabilistic link structure Skip
Delaunay Network (SDN) for
remote access (C5 2008)
o Network Congestion
m Our proposed data aggregation
tree to reduce network congestion

|'Skip Delaunay Network (SDN)]

SDN (Proposed in C5 2008) SkipNet (N.J.Harvey, 2003)
o Hybrid Structure: (SkipNet + Delaunay Network) W wop o w m 'T
D TE @ IO Qe
Features » 2 , 2
o Autonomous and distributive generation E[FWJII h ﬂs . Lez
o Routing scheme for efficient geocasting —~ ,AEl‘ '
g .. Ring 0 T ng 1 Lei
o Robust for rebuilding network when nodes join/leave E'/\ B
g E—
o Low degree =1
N SDN H_-IE' Rool Ring __. Level L=D
eve N N, [Level (Total) | I
n N . .
ng 5 e X Destination
N4 Level ns Neighbor Node
> 0 n11n31n51n7
eve Ng 1 Np,N1,N5,Ng
ny Ns 2 No,Ng,Ng
ns N4 No N Total No,N1,N2,N3,N5,Ng,N7,Ng
Ny ®)
S ne . . .
e o ® ® Virtual Voronoi Region n,
ny ng O ng ° / ox M V.Vor(n,)
@ g
e 4 e O ® . - @ o Destination Point within V.Vor(n,)
No

N3
Base Delaunay Connections of n, =~ Virtual Voronoi Diagram of n,
(Generated from neighbors of entire level of SDN)

|' Geocasting on SDN

Geocasting on SDN
o Data distribution to nodes within the view range
o Geocast for unidirectional routing

|HJ no's View Range | N\
Notations » Nodes y X
NN: Neighbor node set of entire SDN ® Neighbors of no |5/~ -
V.Vor(n;): Virtual Voronoi Region n; n,: Geocasting to R(n,)
q(n;): Query range of n,

Processes
o n;: Send data to node set NN_4 (n;)

N Nienda(ni) = {n; € NN|V.Vor(n;) Ng(n;:) # ¢}
o n;: Data to send to neighbor n,

g(nj) = {V.Vor(n;)Ng(n:)} o e W _.
-~ Nqg ~Z N ri AT
Advantages) no's View Range | |*\ |
o Data reachable with few hops » Nodes /A
o Avoid redundant data transfer ® helgnoors of e [y

= Data sent in a specific direction ng: Geocasting to R8

Network Congestion

m Skewed node/network load at a congested area of nodes

= Numerous nodes within the view range

O

Data disseminated to large number of nodes

= Every node sends data to many neighbor nodes within the view range

= Node receives large number of data from many neighbor nodes

If nodes send their streaming data continuously, it will be a critical problem in terms
of node/network load

-

I .'. .'I ' . -~ I.'

R(n;): 50 nodes (high density) R(nz): 17 nodes (low density)
18 neighbor nodes 9 neighbor nodes

Our Idea of A SN
Data Aggregation 1LY
Data Aggregation Tree RS
o Tree structure built passively from data ;e N [:
paths sent to same destination node S REVY |/ Node ng
/ i e, () no's View Range
. - i : _O}Other Noﬂdas ckote
Notations —{ T R R

o nisource node to send data d, to the same destlnatlon
® nO root node to construct a view range (Each node with a unique tree)

Example: Nodes (n;, n;) send data (d;, d;) respectively
o d, d. intersect at particular internal node n,, and take the same path to
destination

o ltisinefficient to send multiple data (d;, d;, ...) to the same destination

separately

o We package multiple data (d;, d;, ...) as a single data at internal node n,,
and send to destination node n, together

Features of Our Method

= CPU load reduction
o Avoid nodes to receive data frequently

o CPU load balancing regardless of node density
and distribution types (uniformed, skewed)

= Avoidance of network congestion

o Reduce network congestion and frequent packet
flows w.r.t. node density
m Packets are to be sent with long messages up to the limit
of window size

O Sending numerous short messages can cause packet loss
due to buffer overflow

O Resending lost packets can increase network congestion

Method for Constructing
Aggregation Tree

= Requirements for generating an aggregation tree
o Caching scheme of multiple data

o Classification of multiple data to neighbor nodes
s Package data to send to a common destination node

o Interval time for storing/sending multiple data
L

m Processes for each node

STEP 1. Generate Send list for classifying
data to neighbors .

STEP 2. If (V.Vor(m;) N q(n))) (a) Determination of Neighborsi to Send Quéry
sendList.add(V. Vor(n;) N g(n;));

Ng—N3:Send List
STEP 3. Combine multiple data and send V.Vor(n;) N g¢(n;) B Send to ny

at a particular time interval t V-Vor(n;) N g(n2) §) Altogether
= Appropriate t as future works

(b) Classification of Queries for Neighbor Node nj

Data Structure

m Three lists: Receive List (Rec. List), Neighbor Node List (NN List),
Computation List (Comp. List)

= Queries transferred between nodes
o [Node ID, Packet ID, Location, Query Range, Time]

Quary 4 MNode Query Manager
Rec. List Comp. List
) CompLlistisE
RecList.add(List.addAll(ReclLi
: (B) foreach g
= N it (g N V.Vor(ny)
MMList X 1ni""ﬂ Send List(n; SendListin;).addlg N V.Vor(ny))
O e
83
@A) If every query in
- _ Complist is processed,
b e SendListny send.

CompList.clear()

Evaluation

Verify the efficiency of our method from node congestion within the
view range

Examine how the node density affects the CPU, network, and cache
load with/without aggregation method

Simulation Settings

o View Range: Circular range
= Size and shape equal for every node

o Node Distribution: Nodes from 2 to 500 within view range
m Few nodes (low density) to many nodes (high density)

o Data Transfer: Nodes send data per each step
= Nodes and network assumed to have equal performances

Methods

o Aggregation: Package multiple data and send to neighbor nodes
o No Aggregation: Just cast data to neighbor nodes

CPU Load per Node

2500 r
No Aggregation
. gopg | [T—hewreesbion
®
éf|
© 1500 F
=
[(h]
o
@ 1000 f
£
=
500

0 100 200 300 400 500

Num. Nodes in View Range

= Evaluation method
o x axis: Number of nodes within the view range
o yaxis: Number of the entire received data of a root node

= Evaluation results
o CPU load is significantly reduced with aggregation method

o As the total data transferred between nodes are low, network load can be
reduced as well

Average Cached Data per Node

Mum. Cached Data

D 1 1
0 100 200 300 400 200

Num. Nodes in View Range

= Evaluation method
o X axis: Number of nodes within the view range
o Yy axis: Average Number of cached data for a root node

= Evaluation results
o No aggregation method: Just casts the received data, and thus does not
cache data

o Aggregation method: Number of cached data rises proportionally
according to number of nodes

Discussions

Simulations performed with step-by-step data transfer

Results of analyses
o Node and network load significantly reduced
o Number of caches increase moderately according to node increase

Following points for implementation in real environment:

o Datatransfer speed affected by CPU performance and network
congestion

o Number of receivable data should be controlled according to data
volume and number of cached data

o Minimum data transfer latency required for interactions and
construction of view

Important to determine an appropriate interval time for caching data

Related Works

Network Scalability

o S.-Y. Hu, P2P-NVE, 2007
= Forwarding model for disseminating data to surrounding nodes

o Y.Kawahara, IEEE ICCS, 2002

= Adjustments of direct connection and multihop communication nodes
considering their distance

System Scalability

o S.Rueda, IEEE VR, 2007

m System throughput and response time according to the types of node
distribution

Nodes Interaction

o B. Knutsson, IEEE Comp and Comm Societies, 2004

= Divisions of regions, and multicast tree for node communications within the
same region

Our focus: Node density problems within the view range
o CPU and network load reduction for congested nodes within view range
o Remote access to distant nodes within view range

Application Fields

For collecting local data from the surrounding nodes on
P2P network

Application Examples

o GUI construction for Virtual Collaborative Space
= Massive Multiplayer Online Games (Everguest, Ultima Online)
= Social Virtual Worlds (Second Life, Active Worlds)
= Educational Environment (Digital Campus) «\2 .

o Sensor networks for aggregation
of surrounding data

m Target object extraction gazed by N3
many people simultaneously

= Necessary to reduce network congestion - o
. . L] ode amera nange
at a surrounding node set of target object Voronoi Edge =3 ROl

ROI: Region of Interest (Region w/ target object) | R. Nishide, P2P-NVE, 2007

Conclusion

Data aggregation tree on SDN

o Achieve both advantages of SDN and aggregation tree, essential for
visualization and interaction in space

m SDN: Geocast on SDN to avoid data transfer delay
m Aggregation Tree: Caching scheme to reduce CPU and network load

Numerical Simulation
o Our method works efficiently in terms of node/network load distribution

o Number of data in a cache rises moderately according to the increase of
nodes

Future Works

o Acquire appropriate interval time lengths for caching data

o Examine the amount of data loss due to packets transfer frequency
o Verification of our method in real environments

Thank you for your
Kind attention

