
Consistency Management for Peer-to-Peer based MMVEs

<u>Gregor Schiele</u>¹, Richard Süselbeck¹, Arno Wacker², Tonio Triebel¹, and Christian Becker¹

1) University of Mannheim Mannheim, Germany 2) University of Duisburg-Essen Duisburg, Germany

Overview

- Scenario & goal
- The peers@play project
- Our approach
- System architecture
- Conclusion & future work

Motivation

Consistency management required

- High responsiveness
- Seamless operation
- Resource efficiency
- Distributed control

 \rightarrow high complexity for developers

How can we support developers with this?

Our Goal

Support MMVE developers by providing a generic consistency management infrastructure that is...

Flexible

 Support different behaviors w.r.t. consistency for different situations and activities

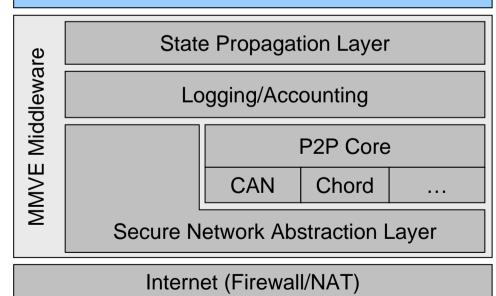
Adaptive

React to fluctuating resource availability & system load

Extensible

Allow developers to add new behaviors

The Peers@Play Project


Goal: conceptual framework for p2p MMVEs

- algorithms
- protocols
- Main topics:
 - scalability
 - consistency
 - security
- Conducted by:
 - Univ. Mannheim
 - Univ. Duisburg-Essen
 - Univ. Hannover

MMVE Specific Software (e.g. 3D GUI)

MMVE Framework (Object Model + Container)

Consistency Management

Our Approach

Provide generic consistency mngt infrastructure

Main concepts:

- Selectable synchronization protocol
- Reflection API
- Consistency plugins
- Consistency sessions
- Dynamic relocation

Selectable Synchronization Protocols

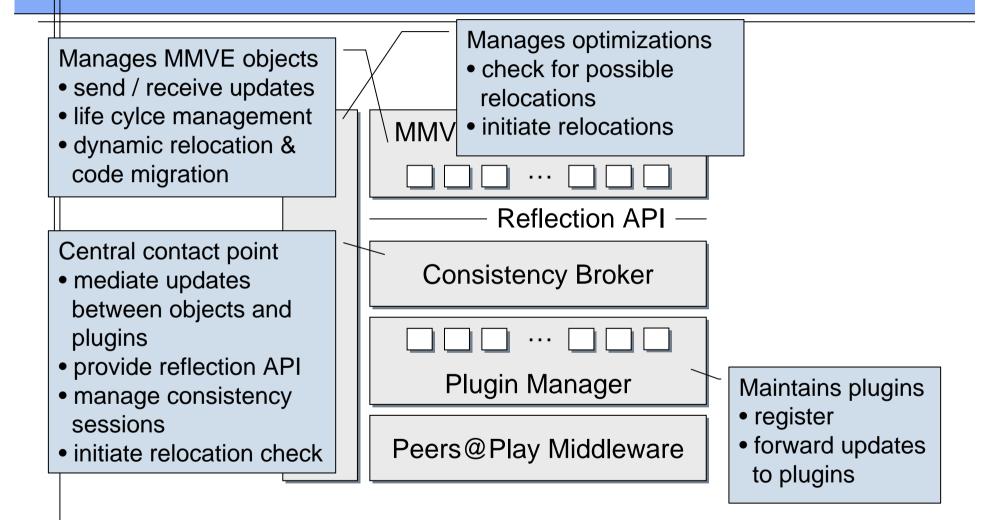
- Infrastructure offers different synchronization protocols (providing different consistency models):
 - Laissez faire
 - Conservative (strict synchronization)
 - Optimistic (rollback)
- Application specifies required consistency
 - Tradeoff between delay / overhead and inconsistencies
 - Depends on: type of update, update context, system load
 - E.g.: moving vs. picking up, passing by vs. fighting
- Infrastructure selects suitable protocol

Reflection API

- Choice of consistency may depend on current system work load & resources:
 - Willing to sacrifice consistency for performance?
 - Low load \rightarrow little delay \rightarrow high consistency
 - High load \rightarrow large delay \rightarrow low consistency
- Reflection API to query current work load
 - Expected delay for given consistency
 - Predicted using historical data (log)
- Log exchange between peers
 - Better prediction for moving peers

Consistency Plugins

- Encapsulate synchronization protocols
- Different MMVEs may require different consistency models & synchronization protocols
 - Highly optimized for specific kinds of updates, e.g. involving electronic payments
 - New & better protocols
- Developer can extend infrastructure with plugins
 - Set of plugins selected at development time


Consistency Sessions

- Groups updates into common context
- Optimistic synchronization: rollback possible
 - E.g.: object could not be taken \rightarrow undo using it
- Disrupts seamless MMVE operation
 - May confuse and annoy users
- Perform partial rollback using consistency session
 - Allows application to specify dependencies between updates
- Also: allows choosing multiple consistency models for update
 - Users fighting each other: create session & select high consistency for movement updates
 - All others: low consistency

Dynamic Relocation

- Synchronization delay depends on placement of update sources in P2P network
 - User in USA interacting with NPC executed on peer in Asia
- Location of update sources modifiable
 - Peer executing NPC can be changed
- Dynamic relocation of MMVE objects (e.g. NPCs)
 - Due to high overhead: triggered by application
 - Determined and executed by infrastructure

System Architecture

Conclusion & Future Work

- Consistency crucial for MMVEs
 - Tradeoff: consistency vs. delay & overhead
- Consistency infrastructure designed
 - Basic support for developers provided
 - Implementation underway
- Future Work:
 - Detailed evaluation
 - Support for inter-plugin dependencies
 - Extended support for automated optimization decisions

Thank you for your attention!

Contact data:

Gregor Schiele, University of Mannheim, Email: gregor.schiele@uni-mannheim.de

Project webpage:

http://www.peers-at-play.org