
QuON – a Quad-Tree Based Overlay Protocol for
Distributed Virtual Worlds

Helge Backhaus and Stephan Krause
Institute for Telematics

Universität Karlsruhe (TH)
Zirkel 2, D–76128 Karlsruhe, Germany
Email: [backhaus, stkrause]@tm.uka.de

Abstract—Massively Multiplayer Online Games and Virtual
Worlds are among the most popular applications on the Internet.
As player numbers increase, the limits of the currently dominant
client/server architecture are becoming obvious. In this paper
we propose a new distributed event dissemination protocol for
Virtual Worlds and MMOGs. This protocol is based upon the idea
of mutual notification: All players send their game event messages
directly to all neighboring players inside their Area of Interest.
The connectedness of the system is ensured by binding neighbors.
They are selected using quad-trees. We show by simulation that
the proposed system achieves practical performance for Virtual
Worlds and Massively Multiplayer Online Games.

I. INTRODUCTION

In recent years, Massively Multiplayer Online Games (short:
MMOGs) have become a popular genre among computer
gamers. Additionally, virtual worlds like Second Life have
created much interest in mainstream media. Traditionally,
MMOGs and Virtual Worlds rely on central servers or server
farms to disseminate game events among players. As player
numbers increase, however, these approaches reach their lim-
its. Not only is maintaining a huge server infrastructure a
significant cost factor in providing an MMOG, the capacity
of the server also limits the number of concurrent players in
a game. Most MMOG developers today resort to techniques
known as instancing. Instead of providing one shared world for
all players, they provide several copies of the game world, each
containing only a fraction of the players. Players in different
instances of the game world can usually not interact.

P2P technologies have emerged as a possible way to solve
the scalability problem of client/server based architectures.
There is a growing interest in P2P protocols for MMOGs and
Virtual Worlds in the research community. Several different
new architectures have been proposed. In a previous work,
we classified these so called Distributed Virtual Environments
(DVE) and evaluated their performance [1]. Our research
results suggested that mutual notification protocols offer very
good performance in many scenarios. In these protocols, play-
ers exchange update messages directly with their neighbors
without the need for supernodes or additional overlay routing.

However, we found that some existing mutual notification
protocols could not provide full neighbor awareness [2]. Oth-
ers had to use complex backup mechanisms to overcome this
issue, or induced a high traffic overhead. In this paper we

propose a new scalable architecture, that can provide near-full
neighbor awareness without any of these drawbacks.

II. RELATED WORK

In [3], E. Tanin et al. propose a distributed quad-tree index
in peer-to-peer networks. In this approach, the underlying
space is divided by a MX-CIF quad-tree. Objects in the space
are associated with a region in this quad-tree, and stored at
a peer that is responsible for that regions. Chord [4] is then
used to find the responsible peers.

This approach can be used to store and retrieve spatial
data with range queries. However, it is not well suited for
interactive applications. All queries have to be routed through
Chord, which may lead to intolerable delays. Also, the con-
stant movement of players may induce a high load on the
system.

COVER [5] was proposed by Morillo et al. In COVER, all
players send movement updates to all their neighbors, that
in turn forward the update to their “second-tier” neighbors.
Players, whose AOI is not completely overlapped by other
player’s AOI rely on a supernode architecture for neighbor
awareness: The playground is partitioned into a global quad-
tree. Each region in the quad-tree contains up to a certain
number of uncovered players and a supernode. All players
send their movement update to their supernode, which in turn
can inform uncovered neighbors about moving or new players.
Regions will be split and merged dynamically dependent on
the number of players inside the region.

While the authors of COVER provide an evaluation of their
system in [5], they do not analyse the stability of their system
in case of churn. Failing nodes may impair the neighbor
awareness. Additionally, the evaluation only simulates a very
short timespan. As merging of regions is not always possible,
the global quad-tree can degenerate over time and lead to
a highly inefficient supernode distribution. Combined with
the fact that all movement updates have to be forwarded to
all neighbors’ neighbors, COVER can lead to a huge traffic
overhead.

C. GaultierDickey et al. propose N-tree [6] for ordering
and disseminating events in peer-to-peer games. N-trees are a
generalization of quad-trees. The authors propose to partition
the game space dynamically by a quad-tree. Events only
relevant for one region in the quad-tree are delivered directly

to all players in this region. Events whose scope exceeds the
region will be forwarded over the quad-tree to neighboring
regions.

With uniformly distributed players and only local events,
this approach scales extremely well. However, this is not a
realistic assumption. Most events, even movement, affect at
least all players in the visual range. Additionally, players in
DVEs tend to form crowds or groups, as interactions between
players are central to DVEs. Groups of players that roam near
a border of a region in the N-tree will cause a high load on
the leaders of the regions and to delays in the event message
propagation. Also, the frequent changing of regions that may
occur in such a scenario may lead to inconsistencies in the
tree.

Vast[7] (Voronoi-based adaptive scalable transfer) is an
example of a mutual notification protocol. It uses Voronoi
diagrams for neighbor discovery and classification. Every
player builds a Voronoi diagram containing his own and his
neighbors’ positions. Voronoi diagrams seamlessly partition a
region in non-overlapping subregions. Each region contains
exactly one player. Neighbors are classified via the Voronoi
diagram and the Area Of Interest (AOI), a circular region
around each player. New neighbors are found with the help
of the boundary neighbors, that are neighbors whose Voronoi
region is intersected by a player’s AOI. If a moving player M
enters the AOI of a player P, a boundary neighbor of P will
notice that event and notify P.

A churn and latency can lead to a partitioning of the overlay,
Vast cannot provide full player awareness [2] without any
additional measures. To improve the connectedness of the
network, complex backup mechanisms have to be added [8].

All these protocols mentioned previously use a globally
defined tesselation of the virtual world. However, due to
message latency and churn players will in effect not allways
have a consistent view on this tesselation. This can impede
protocol performance.

To avoid this, our proposed protocol does not use a globally
defined tesselation. Instead, the tesselations of all players are
independent of each other.

III. PROTOCOL DESIGN

Distributed Virtual Environments and especially MMOGs
often require soft real time constraints. In our approach, when
two players need to exchange information, we want them to
communicate via a direct connection. The advantage of this
is that all messages exchanged between players are always
transmitted in one virtual hop in the overlay network. Latency
therefore only depends on the routing in the underlay network
without the need of additional routing overhead on overlay
level.

A. Interest management

While a fully meshed overlay network works well for a
small number of nodes such a topology is not feasible for a
larger number of participants. Therefore, we define the Area
of Interest (AOI) of a player as a circular region around

his position. A player should only be informed about events
inside his AOI, as all other events are out of his scope of
perception. Thus, a player connects to all other players inside
his own AOI. Connecting to these neighbors, however, is
not sufficient to guarantee the connectedness of the overlay
network. Players sometimes need to keep connections outside
their AOI to prevent a partitioning of the network. Therefore,
players also remain connected to so-called binding neighbors,
that may be located outside their AOI. Neighbor classification
and management is done via a local point quad-tree[9], which
all players keep independently of each other.

B. Point Quad-Tree

Using point quad-trees for neighbor classification has sev-
eral advantages. Point quad-trees are easily constructed and
well suited for range queries and k-nearest neighbor searches.
In contrast to Voronoi diagrams, point quad-trees can be
represented with a simple data structure. Construction of and
searching within a quad-tree relies mostly on checking points
against axis aligned boxes.

In QuON, each player constructs a quad-tree that consists of
his own and all his known neighbors’ positions. Figure 1 shows
a quad-tree that results from a player with nine neighbors.
First, the player’s own position, marked by a black dot, is
inserted into the quad-tree. After that, the positions of players
1 to 9 are inserted in the tree. Every time a point is inserted
into the quad-tree, the region containing the point is split into
four subregions at the points position. Thus, the gameworld
is partitioned into non overlapping regions by the quad-tree,
with each region containing one point at the most.

Point quad-trees are dependent on the order in which points
are inserted into the tree. This does not matter for QuON,
however, since the first split is always done through the players
position. Searching is then only done in the four resulting
subquadrants.

In that regard it is important to notice, that there is no
globally valid quad-tree, which splits the whole game world
into fixed regions. Instead, point quad-trees are only main-
tained locally by each player and used for range queries
among known neighbors. The local quad-trees, however, do
not necessarily relate to each other or the overall structure of
the overlay network.

C. Neighbor Classification

In QuON each player maintains a list that contains all
neighbors he knows. QuON differentiates between 3 types of
neighbors:

Direct neighbors are all players within a certain player’s
AOI. They need to receive status updates from that certain
player, in order to have a consistent view of the game world.
Direct neighbor relationships are always bilateral.

Binding neighbors are needed to ensure the connectedness
of the overlay network. They are used for discovering and
maintaining connections to far-away groups or single neigh-
bors.

Fig. 1. Resulting point quad-tree for nine neighbors.

Binding neighbors are found by performing a k-nearest
neighbors search on a player’s local point quad-tree. The
first level of the quad-tree always splits the game world in
four quadrants at the player’s position. Each player tries to
select one binding neighbor in each of this four quadrants
in every classification process and can thus have up to four
binding neighbors. If there is more than one neighbor in a
quadrant, then the neighbor closest to the player is marked as
a binding neighbor. Therefore, binding neighbors inside of a
player’s AOI are preferred. Binding neighbor relationships are
not necessarily bilateral.

Soft-state neighbors are needed to make a binding rela-
tionship between two players bilateral. A player will send
status updates to all soft-state neighbors. A soft-state neighbor
relationship will be dropped if it is not refreshed regularly.
Every time a player moves or receives a movement update
from one of his neighbors, he has to rebuild his local quad-
tree and reclassify his neighbors.

An example of the neighbor classification process is given
in figure 2. Player A has three neighbors inside its AOI. One of
those is a binding neighbor, the other two are direct neighbors.

Additionally, player A is a binding neighbor of player B,
while B is not a binding or direct neighbor of A. Since B
needs status updates from A, B informs A that he is a binding
neighbor of B. A then adds B as a soft-state neighbor to his
list of neighbors and sends status updates to B, as long as B
regularly informs A about his binding neighbor status.

D. Neighbor Discovery

A player can discover new neighbors in two different ways.
When a player receives a neighbor’s movement update, he
checks all his neighbors against the moving player’s old and
new AOI. The moving player is then informed about all
neighbors which lie outside his old and inside his new AOI.
The moving player then establishes a connection to his new
direct neighbors.

New neighbors can also be found through a player’s binding
neighbors: Every time a player moves, he sends an message
to each of his binding neighbors comprising of the positions
of his other binding neighbors. When a player receives such
a binding neighbor notification, he checks whether any of the
new neighbors are closer to his position than the old binding

Fig. 2. QuON neighbor types.

neighbor in the respective quadrant. If this is the case, the
old binding neighbor will be replaced by the new one. As
this process is repeated in regular short intervals, a player will
recursively find the closest binding neighbor in each quadrant.

This mechanism will guarantee that a player P will be
informed about all players that enter his AOI: If his binding
neighbor in the respective quadrant is not inside P’s AOI, a
moving player M that enters P’s AOI must be closer to P than
his old binding neighbor and will therefore become the new
binding neighbor. If P’s binding neighbor in the respective
quadrant is inside of P’s AOI and M is not a binding neighbor
of P, M will have at least one neighbor that also has a neighbor
relationship with P and can inform P about M’s presence.

This binding neighbor topology scales well for large num-
bers of players: As a player can have a maximum of four
binding neighbors, he never sends more than four binding
neighbor updates per update cycle to his binding neighbors.
As each update message comprises a maximum of three bind-
ing neighbors, bandwidth consumption for binding neighbor
exchange is independent of the total number of players within
the overlay or the number of neighbors inside a player’s
AOI. Therefore, the bandwidth per player used for inter-group
communication for any number of groups never exceeds a
certain limit.

Figure 3 shows the overlay topology for 15 players, with a
very small AOI, so that the structure resulting from the binding
and soft-state neighbors is visible.

E. Backup Mechanisms

Assuming an ideal world, the above neighbor discovery
would ensure network connectedness and full neighbor aware-
ness. But due to message delay or failing overlay nodes
inconsistencies or partitioning can occur. Therefore, QuON
utilizes two backup mechanisms in order to detect and repair
inconsistencies and prevent partitioning.

An AOI buffer is used to compensate for message latency
and simultaneous neighbor movement. When classifying direct
neighbors, a player multiplies AOI sizes by a certain factor.
This factor is dependent on the maximum movement speed of
the players within the game world. This prevents the loss of
neighbors that are close to the edge of a players AOI.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

Fig. 3. QuON overlay structure for 15 players.

The second mechanism is a list of backup neighbors. If
a player switches a binding neighbor and the old neighbor’s
position was outside his AOI, he stores the old binding
neighbor in the list of backup neighbors. Only one neighbor
per quadrant is stored, old entries are discarded. Thus, the list
of backup neighbors never contains more then four entries.

The entries in this list are contacted in regular intervals.
They answer with information about their binding neighbors. If
groups of players are separated due to the failure of a binding
neighbor, the information gained from contacting the entries
in the list of backup neighbors can be used to regain con-
nectivity. With a properly chosen interval to exchange backup
neighbor information, partitioning of the overlay network can
be effectively prevented.

F. Joining the Overlay

When a player P wants to join the overlay, he sends a join
request to an arbitrary player that is already connected to the
overlay1. The join request contains the player’s initial position.

The accepting player compares this position with his own
and the positions of all his neighbors. If he knows any player
closer to P’s position, he will forward the join request to
this player. This is repeated recursively, until the join request
reaches the player closest to P’s position. This player responds
with a join acknowledge message to P. The message contains
a list of all his known neighbors. P then classifies all obtained
neighbors and establishes connections to them.

Assuming an equal distribution of players in the gameworld,
join overhead grows linearly with the distance beetwen the
accepting player’s position and the inital position of the joining
player. Thus, a cache with a list of players that are located
roughly in the area where players want to join respectively is
useful for the joining procedure.

1We assume that such a player can be found by the established mechanisms
for overlay bootstrapping.

G. Leaving the Overlay

When a player is about to leave the overlay, he sends a
leave notification to all his neighbors. Attached to the leave
notification is a list of all his known neighbors, so that
the other players can update their list and reclassify their
neighbors.

When a player leaves the overlay due to failure, other
players detect the missing neighbor via a timeout mechanism.
If the failing player was another player’s binding neighbor,
a replacement binding neighbor is found through the binding
neighbors exchange or via the list of backup neighbors.

IV. EVALUATION

To evaluate the performance of QuON, we run a series
of simulations. We measured communicational overhead, net-
work connectedness and neighbor awareness. As a reference,
we repeated the same simulation with Vast. Vast was extended
with the backup mechanisms proposed in [8]. For all simula-
tions we used OverSim [10] as simulation environment.

A. Simulation Parameters

The simulations were done using OverSim’s SimpleUnder-
lay. In this underlay model, nodes are placed into a two-
dimensional space. Message delay is calculated using the
nodes’ access net delay and the nodes’ euclidean distance.
This allows simple, yet very realistic delay calculations for
Internet-like settings [11]. Node positions were chosen to fit
the measurements from CAIDA’s skitter project [12].

Node joins and leaves were initiated by OverSim’s Pare-
toChurn churn generator. This churn generator simulates heavy
tailed node session times, using a Pareto distribution for
calculating a node’s live and dead time [13]. Heavy tailed
session times in MMOGs are supported by several measure-
ment studies [14][15]. Our average mean session time was 100
minutes [15]. The churn generator was configured to create
on average 500 live nodes. Each simulation run lasted two
hours of simulated time. On average, 1400 player joins and
900 player leaves occurred per simulation.

For a realistic simulation of a MMOG we implemented
a simple gaming application. This application is aware of
a player’s position on a virtual game field. The game field
measures 1,000m*1,000m. With an average of 500 players,
the player density is roughly equivalent to the most crowded
zone in “World of Warcraft”.

The AOI size of all players is set to 50 meters, i.e. players
are aware of all neighbors inside a circular shaped area with
a radius of 50m. The AOI Buffer Factor in QuON is set to
1.1. Thus, QuON will regard any player in a distance of up
to 55m as a direct neighbor. Players move according to a
random waypoint model. As players in MMOGs tend to play
together in groups, we extended this movement model to a
group based random waypoint. Here, players build groups of
a configurable size. Groups agree on a common waypoint. As
players in the same group stay close to each other, different
group sizes result in different local player densities. This can
have a big influence on a protocol’s performance [1]. Thus,

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20 25 30 35 40

C
on

ne
ct

ed
 N

od
es

/T
ot

al
 N

od
es

 (
%

)

Group size

QuON
Vast

(a) Connectedness

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30 35 40

N
od

es
 w

/o
 m

is
si

ng
 n

ei
gh

bo
rs

/T
ot

al
 N

od
es

 (
%

)

Group size

QuON
Vast

(b) Neighbor awareness

Fig. 4. Simulation Results

we repeated the simulations with group sizes varying from 1
to 40 players.

To avoid players walking in a straight line, a flocking
algorithm [16] is applied to the moving players. The walking
speed of all players is set to 5m/s, which is roughly the
running speed used in “World of Warcraft”. As players move,
the gaming application generates position updates which are
then sent to the peer-to-peer protocol layer. This is done six
times per second, which is a realistic average movement update
frequency for MMOGs [15].

B. Results

Three metrics are important when judging the performance
of a P2P protocol for Virtual Worlds and MMOGs:

• Network connectedness and neighbor awareness: In a
Virtual World or MMOG it is vital that all players are
aware of all their neighbors. This can only be achieved
if the network stays fully connected.

• Bandwidth: In a P2P protocol all events are disseminated
directly by the peers. Thus, peers are required to send a
considerable amount of messages. However, the result-
ing bandwidth requirements must not exceed a player’s
resources.

• Latency: Many interactions in Virtual worlds and es-
pecially MMOGs are sensitive to message propagation
delay. Studies showed that many players will not tolerate
latencies above 500ms [17]. Many players will notice
even smaller latencies [18].

1) Network connectedness and neighbor awareness: Net-
work connectedness and neighbor awareness are the main
criteria for a P2P protocol for MMOGs: If players are dropped
off the network, or if they frequently miss some of their
neighbors, they will stop using the protocol.

Figure 4a shows the percentage of players that are connected
to at least one other player in the overlay network in relation
to the group size. The graph for QuON shows a straight line
at 100%: No player ever is disconnected from the QuON
network, regardless of the group size.

The graph for Vast shows a negative correlation between
group size and the fraction of connected players: With a group
size of 1, roughly 99.3% of all players are connected to the
network, i.e. about 0.7% have been dropped. At a group size
of 10, more than 99.9% stay connected. With larger group
sizes, this number fluctuates around 99.98%.

This correlation can be explained by Vast’s backup mech-
anism that is responsible for avoiding lost players in case of
churn: Vast identifies nodes that have less neighbors than the
average as ,,critical“. Those ,,critical nodes“ will distribute
backups of their list of neighbors to all their known neighbors.
In case of a node failure, this redundancy can be used to repair
the network. However, in case of almost equally distributed
players, no nodes will deem themselves critical, and thus in
effect disable the backup mechanism.

Figure 4b shows the neighbor awareness measured by the
fraction of nodes without any missing neighbors. In QuON,
neighbor awareness is almost unaffected by group size. It
fluctuates around 99.9%, with a minimum of 99.86% and a
maximum of 99.98%.

As expected, Vast’s neighbor awareness graph is shaped
similar to its network connectedness graph: Vast’s neighbor
awareness is influenced by the group size in a similar way.
The neighbor awareness starts at roughly 92% for a group
size of 1, and reaches a maximum of 98.8% for a group size
of 20.

2) Bandwidth: As players usually have limited bandwidth
capacities, an overlay protocol should minimize its traffic over-
head. Figure 5 shows the maximum and average bandwidth
QuON and Vast utilize in relation to the group size. The graph
shows that traffic increases as group sizes grow. With larger
group sizes, a player has on average a higher number of players
inside its AOI and is such required to send his update messages
to a higher number of other players. This causes higher traffic.

With a group size of 1, QuON used 8.2 kBytes/s on average.
The bandwidth demand grew with the group size, reaching an
average of 18.6 kBytes/s at a group size of 40. The maximum
bandwidth demand observed in the simulation runs was 14.6

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 5 10 15 20 25 30 35 40

B
an

dw
id

th
 (

B
yt

es
/s

)

Group size

QuON (avg)
QuON (max)

Vast (avg)
Vast (max)

Fig. 5. Simulation Results – Bandwidth

kBytes/s for a group size of 1, growing to 73.2 kBytes/s for
a group size of 40.

For a group size of 1, Vast’s bandwidth demands were
only slightly larger than QuON’s: On average it needed 8.4
kBytes/s. However, as group sizes increased, Vast started to
cause much higher traffic: With a group size of 40, Vast needed
53.3 kBytes/s on average. When looking at maximum traffic
figures, the differences between Vast and QuON show even
more clearly: Vast needed 25.8 kBytes/s for a group size of
1, and 270.7 kBytes/s for a group size of 40. This is likely to
exceed the resources of most users.

3) Latency: As in QuON and Vast—as mentioned in sec-
tions II and III—all event messages are exchanged directly
between the neighbors, no message will travel more than one
hop. Therefore, the delay stayed nearly constant throughout
all simulation scenarios for both protocols. In our setting, the
resulting delay was around 90ms.

V. CONCLUSION

In this paper we have proposed a new overlay protocol for
Virtual Worlds and MMOGs, denoted as QuON. The advan-
tage of QuON as a mutual notification protocol is that all event
notifications are exchanged directly between neighbors, thus
minimizing the latency. No server or additional infrastructure
is needed for the protocol.

The key feature of QuON is the intelligent selection of a
fixed number of binding neighbors, which is done with the
help of quad-trees. This design limits the traffic overhead while
providing full network connectedness.

Evaluation results show that QuON is able to provide full
network connectedness and almost full neighbor awareness in
a simulation comprising of 500 players, regardless of group
sizes. The required bandwidth did not exceed reasonable
boundaries. As a result, we conclude that QuON provides
a scalable peer-to-peer architecture for Virtual Worlds and
MMOGs with a practical performance. As future work we
are evaluating the gains of dynamic AOI sizes for QuON to
avoid overloading in case of densely populated spots.

REFERENCES

[1] S. Krause, “A Case for Mutual Notification: A Survey of P2P Pro-
tocols for Massively Multiplayer Online Games,” in Proceedings of
NetGames 2008 Network and Systems Support for Games, Worcester,
Massachusetts, USA, Oct. 2008, pp. 28–33.

[2] H. Backhaus and S. Krause, “Voronoi-based adaptive scalable transfer
revisited: gain and loss of a voronoi-based peer-to-peer approach for
mmog,” in NetGames ’07: Proceedings of the 6th ACM SIGCOMM
workshop on Network and system support for games, 2007, pp. 49–54.

[3] C. GauthierDickey, V. Lo, and D. Zappala, “Using n-trees for scalable
event ordering in peer-to-peer games,” in NOSSDAV ’05: Proceedings of
the international workshop on Network and operating systems support
for digital audio and video, 2005, pp. 87–92.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM ’01: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications,
2001, pp. 149–160.

[5] P. Morillo, W. Moncho, J. M. Ordua, and J. Duato, “Providing full
awareness to distributed virtual environments based on peer-to-peer
architectures,” in Advances in Computer Graphics, ser. Lecture Notes
in Computer Science, vol. 4035. Springer Berlin / Heidelberg, 2006,
pp. 336–347.

[6] E. Tanin, A. Harwood, and H. Samet, “Using a distributed quadtree
index in peer-to-peer networks,” The VLDB Journal, vol. 16, no. 2, pp.
165–178, 2007.

[7] S.-Y. Hu and G.-M. Liao, “Scalable peer-to-peer networked virtual
environment,” in NetGames ’04: Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games, 2004, pp. 129–133.

[8] J.-R. Jiang, J.-S. Chiou, and S.-Y. Hu, “Enhancing neighborship con-
sistency for peer-to-peer distributed virtual environments,” in ICDCSW
’07: Proceedings of the 27th International Conference on Distributed
Computing Systems Workshops. Washington, DC, USA: IEEE Com-
puter Society, 2007, p. 71.

[9] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval
on composite keys,” Acta Informatica, vol. 4, no. 1, pp. 1–9, March
1974.

[10] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” in Proceedings of 10th IEEE Global
Internet Symposium (GI ’07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA, May 2007, pp. 79–84.

[11] T. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 1, pp. 170–179 vol.1, 2002.

[12] A. Ma, “Caida : tools : measurement : skitter,”
http://www.caida.org/tools/measurement/skitter/, June 2008, accessed
on 2008-06-08.

[13] Z. Yao, D. Leonard, X. Wang, and D. Loguinov, “Modeling heteroge-
neous user churn and local resilience of unstructured p2p networks,” in
ICNP ’06: Proceedings of the Proceedings of the 2006 IEEE Interna-
tional Conference on Network Protocols. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 32–41.

[14] D. Pittman and C. GauthierDickey, “A measurement study of virtual
populations in massively multiplayer online games,” in NetGames ’07:
Proceedings of the 6th ACM SIGCOMM workshop on Network and
system support for games, 2007, pp. 25–30.

[15] K.-T. Chen, P. Huang, and C.-L. Lei, “Game traffic analysis: an mmorpg
perspective,” Comput. Netw., vol. 50, no. 16, pp. 3002–3023, 2006.

[16] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in SIGGRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, 1987, pp. 25–34.

[17] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40–45, 2006.

[18] J. Smed, T. Kaukoranta, and H. Hakonen, “Aspects of networking in
multiplayer computer games,” in Proceedings of International Confer-
ence on Application and Development of Computer Games in the 21st
Century, L. W. Sing, W. H. Man, and W. Wai, Eds., Hong Kong SAR,
China, Nov. 2001, pp. 74–81.

