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Abstract—In this paper, we discuss interaction interoperability
in Collaborative Virtual Environments (CVE), intended to mean
the ability of two or more users to cooperate despite the
heterogeneity of their interfaces. To allow such interoperability,
rather than focusing on the de-coupling of input devices from
interaction techniques and from interaction tasks, we suggest in-
tegrating interactive systems at higher level through an interface
standardization. To achieve this aim, we propose: i) an archi-
tectural model able to handle differences in input devices and
interaction tasks; ii) an agent-based middleware that provides
basic components to integrate heterogeneous user interfaces.
We also present a prototype of an agent-based middleware
able to support developers in the interconnection of monolithic
applications and we introduce tools and languages we have used
to formalize the interaction tasks considered in the case study.

I. INTRODUCTION AND BACKGROUND

In recent years, Virtual Reality (VR) has become increas-
ingly popular, not only as a visualization technology but also
as a communication interface based on interactive and immer-
sive visualization. VR is commonly defined as “a collection
of technologies that allow people to interact efficiently with
3D computerized databases in real time using their natural
senses and skills” [1]. In this definition, the stress is put on
the VR interaction paradigm in which the user is an active
participant: the immersion of the user in a virtual world allows
new ways of interaction and so makes it possible to design
human-centric interfaces that better focus on his skills and
capabilities.

Despite the wide availability of input devices and interaction
techniques, usually new VR applications exhibit ad hoc post-
WIMP interaction techniques and devices. This is not a
surprise since it is a shared vision that diversity in human-
computer interfaces is a resource rather than a problem. As
Benford et al. state in [2], it would be impossible to develop
a generic interface for every user. In order to be useful,
every domain requires a custom design. Bowman et al. further
refine this concept in [3]. They state that the key word in
the development of usable VR user interfaces is specificity. In
greater detail, an Interaction Technique (IT), in other words

the way of using a physical device to perform an interaction
task, should be designed by considering specifically the group
of users (and therefore their skills), the tasks they have to
perform, the particular application and the input device used.

Therefore, in Collaborative Virtual Environments (CVE),
and even more in Massively Multiuser Virtual Environ-
ments (MMVE), the heterogeneity of input devices and in-
teraction techniques is a problem to face. On the contrary, in
reality, in most collaborative environments users are forced
to use the same input devices and techniques, nearly always
WIMP-based, to interact. For example we can consider the
field of telemedicine. In daily clinical practice, each clinician
has her/his own skills and uses her/his preferred tools to
inspect medical data. So, developing different interfaces for
different medical figures can enhance the usability of the
interaction with medical datasets. Nonetheless, collaborative
applications are insufficient in handling the heterogeneity of
interaction tools. Group-Slicer [4] is a collaborative extension
of the well-known 3D Slicer, a tool for both surgical planning
and medical operations. The precondition of the interaction is
the use of the same input devices and interaction techniques.
The same in [5], in which the authors describe a middleware
environment able to handle heterogeneity of visualization but
not of interaction. In [6] the authors introduce COVE, an
extensible framework for collaborative visualization which
handles possible conflicts generated by multiple plug-ins that
read from the same input device. The main advantage of this
framework is that it allows plug-in developers to design ITs
by separating their implementation from input devices.

This paper is focused on interoperability, “the ability of two
or more software components to cooperate despite differences
in language, interface, and execution platform” [7]. In greater
detail, we discuss interaction interoperability, that is the ability
of two or more users to cooperate despite differences in input
devices and interaction techniques.

To the best of our knowledge, this question has recently
been raised by Ahmed et al. in [8]. In this paper, the authors
propose a framework to support interaction interoperability,



the main benefit of which is the ability to use ontologies
to define interaction tasks and techniques without specifying
how these tasks should be accomplished. By using ontologies,
the framework binds tasks to the user’s preferred interaction
techniques and then to available input devices. In other works
by the same authors, the framework capabilities are further
described (see [9] and [10]). Interoperability is granted by
using a standardized taxonomy built with the Ontology Web
Language (OWL). The framework they propose should also
be able to choose the best input device for a particular user
by analyzing her/his preferences in the interaction. The idea of
decoupling interaction techniques from interaction tasks and
input devices is also described in [3], in which the authors
explore the integration of different technologies to support co-
located collaborations.

From the point of view of an interface programmer, de-
coupling interaction techniques from input devices may not
be worthwhile. As Poupyrev et al. outlined in [11], similar
interaction techniques vary depending on the particular im-
plementation. Studies of the particular implementation of a
technique may not be easily applied to other implementations
of the same technique. Therefore, decoupling interaction tech-
niques from input devices and mixing them according to user
patterns could reduce the usability of the interface.

In light of these considerations, assuming that a formal
description of interaction tasks is still necessary, we propose
to let interaction designers plan ITs coupling them strictly to
the particular input devices used. In the approach, we propose
that different ITs and input devices are handled in a common
framework in the same way as black boxes. We suggest using
an agent-based middleware to provide interaction interoper-
ability in CVEs. This middleware is built upon an architectural
model in which the typical system layers have been extended
to provide interaction standardization between different sys-
tems. The aim is to allow both interaction designers to plan
ITs, coupling them with the corresponding input devices, and
users to collaborate by using the combination of ITs and
devices they prefer.

The organization of the paper is as follows. First, in sec-
tion II, we describe the architectural model we suggest. Then,
in section III, we introduce the agent-based middleware and
its basic components. Finally, in section IV, we describe a
proof-of-concept case study, in which two users collaborate in
a virtual environment by using different interaction techniques
and input devices.

II. ARCHITECTURAL MODEL

CVEs are complex systems in that they involve the crucial
concept of sharing. Users can share knowledge of each other’s
current activities, environments and actions. Most of the issues
to deal with in typical CVEs are beyond the scope of this
paper. We focus on the question of interaction interoperability,
so sharing in this context refers to interaction tasks.

Since every user has her/his preferred formalism and tools,
we speculate that in a CVE each user has to be free to
use her/his preferred interaction techniques and devices. To

allow such a heterogeneity in the execution of interaction
tasks, interaction formalization plays a primary role. Possible
interactions between heterogeneous representations have to be
formalized in a common, shared way.

As Wegner states in [7], there are two main mechanisms for
interoperation in this field: interface standardization, which
means that each users interface is mapped to a common
representation; and interface bridging, which means that there
is a two-way map between user interfaces. Interface standard-
ization makes explicit the common properties of interfaces,
thereby reducing the mapping task, and separates communi-
cation models of user interfaces. On the contrary, interface
bridging is more flexible, since it can be tailored to the needs
of specific user interfaces.

The approach we suggest is to let the user who is in charge
of creating the CVE to implicitly formalize, by exposing
her/his user interface, the common language that other user
interfaces have to speak. Together with the language, the
user also has to specify the peculiar interaction rules he/she
requests.

To better introduce this approach, it is worth considering the
typical logical layers of a collaborative system, as described
by Osais et al. in [12]. In such a system, we can distinguish
three layers: application, control and server (see figure 1).
The application layer is in charge of intercepting events,
providing awareness to users, posting remote events to a
manager and interpreting as local the remote events received.
The server layer contains the session server, which is in charge
of distributing messages to all users. The control layer is
the cornerstone of any collaborative system, since it has to
replicate state changes to maintain consistency among users,
to exchange control information and to replicate signaling
messages.

In a control layer, we need several different figures. An
event manager performs the required conversion of messages
in a common format. A session manager handles sessions,
maintaining a list of active participants. A floor manager
handles floors, that are temporary permissions to access and
manipulate resources, so regulating collaboration. A commu-
nication manager provides services necessary to transport
messages.

In the architectural model we suggest, there is a new figure,
the interaction manager (see figure 1). Its main responsibility
is to handle transitions between interaction tasks. The interac-
tion manager is interposed between the event manager and
the communication manager, since events corresponding to
interactions not allowed in a particular context are not further
propagated in the system.

This component has to be able to deal with the complexity
of post-WIMP interfaces. It works thanks to a formal model
of the interaction rules that specifies how interaction tasks are
connected and how and when floors are granted. Interaction
rules change significantly with the cooperation model. By
following the cooperation model proposed by Margery et
al. [13], there are three levels of cooperation: level 1 is a basic
cooperation level, in which users simply perceive each other in



Fig. 1: Architectural model

the virtual world; level 2 means that each user can change the
scene individually; finally there is level 3 in which users can
act on objects in independent ways (3.1) or in a co-dependent
way (3.2). Obviously different cooperation levels correspond
to different interaction rules.

A collaborative system which exploits interaction interoper-
ability should provide mechanisms to express such fine differ-
ences in interaction models. The formalism we suggest using
is Interactive Cooperative Objects (ICO) [14], an object Petri
nets-based formalism suitable to model real-time interfaces.
In section IV, an example is reported of the adoption of such
formalism to model interaction rules in a real case study.

III. AGENT-BASED MIDDLEWARE

This section presents the key elements of an agent-based
middleware infrastructure devised to overcome interoperability
issues for CVEs. The middleware has been implemented by
an agent infrastructure, since it facilitates the communication
between distributed components and provides, at the same
time, a certain degree of autonomy [15]. Such infrastructures,
named Multi-Agent Systems (MAS), focus on systems in
which intelligent agents interact with each other to cooperate
or to solve complex problems. Thus, they are well suited to
Collaborative Virtual Environments, where collaboration and
problem solving are significant requirements.

The middleware we propose enables users participating in
virtual collaborative sessions to use different input devices
and interaction techniques. In greater detail, the middleware
allows users to interact with each other by i) visualizing
simultaneously the same multimedia objects and ii) replicating
on every participant’s node the execution of all interaction
tasks performed by other participants.

A. Middleware Functionalities

In general, the middleware infrastructure has to aim at
i) sharing a formal description of interaction tasks and a
number of interaction rules, ii) handling floor control, by
authorizing or not users to perform interaction tasks on mul-
timedia objects, and iii) dispatching event notifications to all

Fig. 2: Middleware architecture

participants in order to synchronize the execution of certain
tasks.

It is worth noting that formal descriptions of interaction
tasks, along with interaction rules, have to be produced by the
user who creates the collaborative session. Every participant
willing to join the session has to check if he/she has an
implementation of those tasks at her/his disposal.

Formal descriptions and interaction rules have to be spec-
ified in a shared formal language. For each interaction task,
users who want to cooperate have to indicate: i) the typology
and number of input and output parameters and ii) the pre-
conditions to be satisfied in order to allow the execution of the
task. It is irrelevant how designers implement interaction tasks;
it is sufficient that they accomplish the specified requirements.

B. Middleware Architecture

Middleware architecture consists of a set of components
organized in two logical layers, as shown in figure 2. The
Interface layer handles user interactions and implements the
interaction tasks requested to participate at a session. The
Interoperability layer is the cornerstone of the middleware,
since it is in charge of replicating state changes to maintain
consistent views.

The components of middleware architecture are described
below:

• UserInterface: this component acts as an adaptor and
aims at handling interaction events generated by a par-
ticular input device while performing interaction tasks.
For this reason, each participant has her/his own User-
Interface, within which ad hoc developed interaction
techniques can be enclosed.

• CommunicationBroker: this component is in charge of
dispatching messages received from component publish-
ers to component consumers in an asynchronous way
according to the publish/subscribe paradigm. The Com-
municationBroker plays a central role in the middleware,
although its architecture can be distributed.

• TaskDescriptor: this component is in charge of archiving
and sharing formal descriptions of interaction tasks. The
interfaces of UserInterface components have to satisfy
such formal descriptions.



Fig. 3: Middleware implementation with OAA

• FloorManager: this component handles the concurrency
control for shared multimedia objects and stores the
interaction rules. Each UserInterface questions the Floor-
Manager to perform an interaction task. The FloorMan-
ager grants or refuses the authorization according to the
interaction rules shared between participants.

• InteractionManager: the InteractionManager ensures that
each participant has the same visual representation by
requiring all users, via the CommunicationBroker, to
execute an interaction task launched by a user.

• SessionManager: this component allows users to create,
join and destroy collaborative sessions by handling a list
of participants in a virtual collaborative session. Every
participant has to register with such a component to
access the system.

IV. A CASE STUDY

A proof-of-concept prototype of middleware has been de-
veloped to evaluate the interoperability facilities provided by
the agent-based middleware architecture previously described.

As shown in figure 3, current implementation relies on the
Open Agent Architecture (OAA), a framework for constructing
Multi-Agent Systems developed at the Artificial Intelligence
Centre of SRI International. OAA is structured so as to
minimize the effort involved in creating new agents and ”wrap-
ping” legacy applications [16]. Moreover, OAA facilitates the
development of flexible and dynamic agent communities using
a wide variety of programming languages. Members of agent
communities cooperate with each other in order to perform
computation, to retrieve information and to carry out user
interaction tasks [17].

The OAA-based middleware we have developed enables two
users to cooperate in a semi-immersive virtual environment.
In greater detail, the application allows them to visualize and
interact with 3D anatomical parts reconstructed from CT and
MRI images.

Users can perform two distinct interaction tasks: rotation of
a 3D object, which has to be performed in an exclusive way;
and pointing at 3D objects, that is moving a 3D cursor in the
scene. The two users considered in this scenario use different
interaction techniques and input devices: the user in figure 4a

interacts with a Wiimote, the main controller of the Nintendo
Wii console [18], whereas the user in figure 4b interacts via
a common mouse.

The interaction tasks executed by the two users are im-
plemented differently: the rotation technique of the first user
(Wiimote-based interaction) makes use of quaternions as a
mathematical notation for representing orientations of objects
in three dimensions, whereas the rotation technique of the
second user (mouse-based interaction) makes use of three
Euler angles. In this scenario, since the first user is assumed
to create the collaborative session, quaternions are used as the
shared notation. Thus, the adaptor of the second user has to
implement the conversion from Euler angles to quaternions.

All components have been implemented as agents, as shown
in figure 3. It is worth noting that an agent has to declare its
capabilities, named solvables, in order to join a community of
agents. Such solvables establish a high-level interface to the
agent, used by a facilitator in communicating with the agent
and, most importantly, in delegating service requests to the
agent. Such a model is called the delegated computing model
in OAA. Two major types of solvables are distinguished: pro-
cedure solvables, which describe how agents perform actions,
and data solvables, which provide access to a collection of
data. In the following, a description of every agent constituent
of the middleware is provided.
• UserInterfaceAgent: this agent analyzes input interactions

and manages the presentation of multimedia output to
the user. Each UserInterfaceAgent implements particular
ad hoc developed interaction techniques to perform in-
teraction tasks. These tasks, together with the languages
they are able to speak, have to be declared as procedure
solvables to the FacilitatorAgent.

• FacilitatorAgent: this agent acts as the Communication-
Broker component. It coordinates agent communications,
by maintaining lists of what UserInterfaceAgents can
do, that is their solvables. Each UserInterfaceAgent has
its own FacilitatorAgent, that delegates service requests
to appropriate agents. The FacilitatorAgent implements
the publish/subscribe paradigm by means of the OAA’s
delegated computing model. Each FacilitatorAgent is
linked to all the others by means of a root Facilitator-
Agent, creating thus a hierarchical configuration. Such a
hierarchy has been arranged on two layers, even if it may
be organized on more than two.

• TaskDescriptorAgent: the TaskDescriptorAgent declares
to the FacilitatorAgent a data solvable, in order to archive
and share task interfaces written in a formal language.
The UserInterfaceAgent that creates the collaborative
session sends to the TaskDescriptorAgent the interfaces
of interaction tasks by means of the OAA’s Interagent
Communication Language (ICL), an interface and com-
munication language designed as an extension of Prolog.
In our scenario, the first user specifies the interfaces of
the rotation and pointing tasks.

• FloorManagerAgent: the FloorManagerAgent is a meta-
agent that manages the floor control of the objects of the



(a) Case I - Wiimote-based interaction (b) Case II - Mouse-based interaction

Fig. 4: Case study: two users interact remotely by using a Wiimote and a mouse respectively

visual representation. The FloorManagerAgent resolves
conflicts on the basis of interaction rules. This agent
declares a data solvable too, for the purpose of storing
such interaction rules. These have to be specified by User-
InterfaceAgents via ICO. For simplicity, in our proof-
of-concept prototype the ICO-based interaction rules of
the rotation and pointing tasks have been implemented
directly as C++ code in the FloorManagerAgent. In each
case, several Petri nets interpreters are available (see [19]
and [20]) and can be used to parse UserInterfaceAgent
requests.

• InteractionManagerAgent: the InteractionManagerAgent
requires every UserInterfaceAgent to execute certain tasks
in order to synchronize the visualization among users.
This is accomplished by extending the ICO formalism
to the agents. Specifically, the notion of object has to
be replaced with the concept of agent: when a token
passes through a transition, the action to perform is the
invocation to an agent rather than to an object. This can
be accomplished via the FacilitatorAgent by means of the
OAA delegated computing model.

• SessionManagerAgent: this agent acts as the SessionMan-
ager component. It is invoked by other agents to share
collaborative sessions or to verify if a participant has the
credentials to request the execution of certain tasks.

The object Petri nets-based ICO formalism deserves a fur-
ther description. Petri nets are a mathematical representation
used to model discrete distributed systems, characterized by
places, which are symbolizing states, transitions, which are
representing actions, and arcs, which link places and transi-
tions. The state of the system is defined by a distribution of
tokens, which flow through places along the arcs every time
transitions are enabled. Object Petri nets attribute a type to
each place on the net, allowing thus the use of classes as
types and object references as values. Instead, transitions are
associated to method invocations. ICO extends object Petri
nets by adding the notion of interaction events, which enable
the transitions.

By using the ICO formalism, the FloorManagerAgent can

deduce if an exclusive task has already been executed by a
user. Figure 5 reports the ICO-based formalism of interaction
tasks considered in the case study scenario. The places Watch
and Pointing are initialized with N tokens, where N is the
number of participants (N=2 in figure 5), so a maximum of
two users can move their 3D cursor at the same time. The
place ObjectStill is initialized with only one token. If a user
< u > asks the FloorManagerAgent to rotate an object, this
enables him/her to perform the task only if the token is in
the place ObjectStill. In such a case, one token of the place
Watch and the token of the place ObjectStill fall into the place
Rotation. Until < u > rotates the object < o >, any other
user can rotate the object. When < u > stops rotating, the
two tokens return to their initial states and the rotation task
becomes executable. This configuration ensures the exclusivity
of the rotation task. On the other hand, the pointing task is not
exclusive. Hence, the initialization of the place Pointer with
N tokens, specifying that N pointers < p > are available,
guarantees that every user can perform the task. It is worth
mentioning that the synchronization between two places (such
as ObjectStill and Rotation) cannot be modeled by a finite state
machine.

It is also important that, in the particular case study we have

Fig. 5: ICO representation of the interaction rules



considered, two users exploit different input devices but also
different interaction techniques. If performed with the mouse,
the pointing task is a simple 1:1 mapping between the mouse
position and cursor position in the scene. When the Wiimote
is used as input device, pointing information is derived by
tracking an IR emitter in space. To manage hand jitters, the
Wiimote movements are processed by a PRISM-like filter [21].
The control-display ratio is recomputed immediately according
to the velocity of the input device movements, so that a little
cursor shift corresponds to a slow Wiimote movement and a
wide cursor shift corresponds to a quick Wiimote movement.
Therefore, there is no 1:1 mapping between the device and
cursor positions like in the mouse based interaction. Also the
rotation task is differently implemented. The Wiimote-based
rotation is implemented by mapping 1:1 the orientation of the
device to the orientation of the 3D object (as reported in [22]),
so rotations can be performed with 3 degrees of freedom.

To grant interaction interoperability, all that is needed is
that UserInterfaceAgents are able to speak the same lan-
guage and execute the same task. In the pointing example, a
UserInterfaceAgent communicates the spatial position of the
cursor in the three dimensional Cartesian coordinate system,
since this is the shared language for the pointing task. Other
UserInterfaceAgents receive the pointing event information,
understand it since it is in a language they speak, and know
how to execute it since they have declared the pointing
functionality as one of their procedure solvables.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an architectural model
together with an agent-based middleware to enhance collabo-
rative virtual environments with interaction interoperability fa-
cilities. The heterogeneity of user interfaces is handled through
an interface standardization performed at a middleware level,
so each user is able to choose her/his favorite coupling of input
device and interaction technique to perform an interaction
task. The paper also discusses suitable formalisms to describe
effectively complex interaction tasks and floor management.

Future work will aim at building tools to model easily the
behavior of interaction techniques and devices in order to
simplify the interface standardization process. We also plan
to evaluate server-based vs. peer-to-peer platforms to better
identify points of failure and bandwidth bottlenecks in the
proposed middleware solution.
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