
Spatial Publish Subscribe
Shun-Yun Hu

Department of Computer Science and Information Engineering
National Central University, Taiwan, R.O.C.

syhu@csie.ncu.edu.tw

Abstract—Publish / subscribe is a well-known mechanism
that allows entities interested in certain information (i.e., the
subscribers) to receive relevant messages from some message
generators (i.e., the publishers). We argue that for networked
or distributed virtual environment (VE) applications, a spatial
publish / subscribe (SPS), where each entity can receive messages
generated within a specified space in the VE, is a fundamental
mechanism underlying various VE applications. It is therefore
of importance for the VE community to understand the main
characteristics and limitations of SPS. This paper describes the
basic mechanism of SPS, and how it can be used to support
existing VE requirements such as overlay management, state
management, and content management. Issues for implementing
SPS are also discussed for potential developers to consider.

I. INTRODUCTION

Massively Multiuser Virtual Environments (MMVEs) such
as Massively Multiplayer Online Games (MMOGs) have be-
come very popular in recent years. A fundamental character-
istic for MMVEs is their scalability, where concurrent users
in a single world instance may be between thousands (e.g.,
2,500 users in an EverQuest world) and tens of thousands
(e.g., 45,000 peak concurrent users in EVE Online and Second
Life). Although the total number of online users for a MMOG
may be over a million (e.g., China’s World of Warcraft passed
the 1 million peak user mark in 2008), it is realized by
replicating many parallel world instances, each of which has a
few thousand maximum number of users, who cannot migrate
or communicate across worlds. To further increase MMVE
scalability, researchers have since investigated peer-to-peer
(P2P) architectures [1]. However, P2P designs face security
and reliability issues, given the unstable and heterogeneous
nature of user machines. Commercialization thus is only at
the beginning1, with visible success yet being seen.

Regardless of a client-server or P2P architecture, certain
fundamental operations are required by any VE applications.
We identify such operations as spatial publish / subscribe
(SPS), and argue that most existing VE functions can be
reduced to SPS operations. An implication of this assertion
is that if SPS can be made highly scalable, a virtual world
with millions of concurrent users may become possible.

In a distributed system, the basic publish / subscribe (or
pub/sub) paradigm [2] is that users or nodes interested in
specific messages (i.e., the subscribers) would first announce
their interests via interest expressions (in the form of subscrip-
tion request messages). Later, when messages are produced

1http://www.badumna.com/

by message generators (i.e., the publishers), they would be
matched against previously announced subscriptions, and de-
livered to the relevant subscribers. In a client-server architec-
ture, the server can act as a message hub to easily support
such function, where publications received by the server are
checked and delivered to other clients who have expressed
interests. Two main types of pub/sub models are channel-based
and content-based [2]. Channel-based (also known as subject-
or topic-based [3]) has been the most basic type of pub/sub,
where users would subscribe to specific channels as interest
expressions, and receive all messages published to the specific
channels. Content-based pub/sub filters published messages
according to the message content, and thus provides greater
flexibility at the cost of more processing and resource usage.

We observe though, most operations in a VE require a
different type of pub/sub than channel-based pub/sub. In its
most basic form, a VE allows each user to assume a virtual
representation called the avatar, who needs to be aware of
other users and events within its visibility (called the area
of interest, or AOI of the avatar). A classical approach thus
divides the VE into regularly spaced grid or hexagon cells,
each assigned a multicast channel (either IP- [4] or application-
layer-based [1]). Users then simply subscribe to the cells that
overlap with their AOI to receive relevant message updates. As
users move, they will need to continuously subscribe to new
cells and unsubscribe from old ones. However, the subscribed
areas are often larger than the actual AOI, causing extra
messages to be received. On the other hand, if the cells are
made smaller to avoid extra messages, then more subscription
maintenance is needed, as more cells are needed for contact,
producing another overhead [2], [5].

A more intuitive method thus is for each user to specify
a subscription just once in the form of a space that covers
the AOI exactly (i.e., a spatial subscription). The subscribed
space can move automatically along with user movements.
Relevant messages published by a generator node (i.e., a
spatial publication) would then be sent to the subscribers. As
shown later, this mechanism is sufficient to support almost all
existing VE functions. Overlay, state, and content management
can also be built on top of such a primitive.

In the following sections, we first introduce some back-
ground in Section II on VE requirements and various variants
of pub/sub for VEs. Section III describes the basic SPS model.
We will give examples in Section IV on how SPS supports
existing VE functions, and discuss implementation issues in
Section V. The paper concludes in Section VI.



II. BACKGROUND

We first briefly describe the basic requirements and mecha-
nisms of a VE. VEs can be seen as state machines where many
game states (i.e., attribute values that can be changed) stored
inside game objects are updated based on event messages and
game logic (i.e., rules of the game). Event messages can be
generated by users (which we refer to as actors [6]) as they act
(e.g., walk, pick up, or use certain items), or by internal game
logic (e.g., a grenade has collided with a wall). The events are
processed by a certain arbitrator that would update the game
states by following the rules dictated by game logic. Note
that to ease implementation in practice, the arbitrator may be
implemented as processing separate event queues (instead of
a master queue) for each game object in sequence [6]. Once
game states are changed, update messages are then sent to each
actor whose view is affected. For example, in client-server
VEs (e.g., MMOGs [7] and first-person shooter, or FPS games
[6]), each user machine is an actor, and a server is assigned
as the arbitrator. Users generate events that are sent to the
server for processing, while the server sends back updates to
each user machines to be displayed (often just the relevant
updates within the user’s AOI). In fully connected peer-to-peer
VEs (e.g., real-time strategy, or RTS games [8], or military
simulators such as NPSNET [4]), each user machine serves
as both the actor and the arbitrator. So each machine would
receive all the event messages, process them, and reflect the
changes locally, without being notified by a central authority.

To scalably support this event - process - update cycle,
existing proposals can be categorized by how actor nodes learn
of the updates within their AOI. The first set of proposals is
the spatial multicast, where update messages are multicast to
a group of receivers. The earliest approaches utilize multicast
channels, where the VE is divided into some rectangular or
hexagonal regions, each assigned a multicast channel. Each
actor node can subscribe to the channels of the regions over-
lapped with its AOI, to receive any updates sent to the channel
(from other actors or the arbitrator). This approach faces
the inherent difficulty of determining the right region size:
too large a region delivers excessive messages to each actor
nodes, while too small a region necessitates many subscription
requests, generating message overheads (e.g., NPSNET [4] and
VELVET [9] use IP multicast, whereas more recent work such
as SimMud [1] uses application-layer multicast).

To address the inadequacy of channel-based multicast, spa-
tial multicast delivers messages to only a specified area in the
VE (e.g., N-trees [10] sends message to a specified area, while
Solipsis [11] and VON [12] receive messages from a certain
area). Regardless the support is for publication or subscription,
spatial multicast delivers messages to precise targets, avoiding
the message overhead due to the the approximate nature of
channels. However, spatial multicast is not flexible enough
to allow varying degree of message receival: if a message is
published to an area, all actors within the area will receive the
message regardless of interest; likewise, if an actor subscribes
to an area, it will also receive messages without considering

the potentially different publication ranges (e.g., the sound of
an explosion should be heard farther away than a chat).

A second category of update propagation has utilized spatial
query as a fundamental primitive (e.g., OPeN [13], Colyseus
[14], and HyperVerse’s GP3 [15]). Spatial query allows a node
to register certain game states at a location, then query a
specified area for these states some time later. It provides some
persistency of the game states that can be queried multiple
times by existing nodes or new nodes to the system (i.e.,
addressing a late joining scenario). However, querying may
take O(log n) time (where n is the number of total nodes
responsible for answering the query). Also, in between queries,
newly registered updates may not be queried / discovered
timely enough. Spatial query thus still has limitations in the
total number of supportable nodes, and latencies that may not
meet the real-time requirement of VE applications.

Few works related to VE have explicitly stated the use of
publish / subscribe as an underlying mechanism. Of note are
the communication architecture proposed by Fiedler et al. [16],
the original Mercury [2], DiGAS [17], and HLA’s DDM [18].
Fiedler et al. propose to use grid-based partitioning for the
VE and channel-based pub/sub to receive events from other
actors. So each actor would receive relevant events from the
grids overlapped with its AOI. This has the basic drawbacks as
other channel-based multicast methods. The original Mercury
is basically a content-based pub/sub system, where subscribers
can expressed interests in a flexible, SQL-like subscription
language. Ranges in any given attribute field (e.g., between
50 to 100 in the x-coordinate of a position field) can be
specified as the subscription. As such, filtering in Mercury
is quite powerful and can extend to any content value that has
strict ordering. However, to provide such flexibility, a lookup
(i.e., a spatial query) with O(log n) time has to be performed
continuously, whose latencies may become unacceptably large
when the node size increases. Our observation is that by
focusing pub/sub on only the spatial domain, we may utilize
certain optimization for better performance. DiGAS proposes
a spanning-tree-based broker network to deliver and filter
pub/sub messages. Subscriptions are broadcasted to all brokers
so that once a publication is received, any broker can route
the published message. Division of the VE into cells helps
to make subscriptions more compact (only cell numbers need
to be specified as subscriptions). However, a broadcast-based
subscription may not scale for a larger node size. Here, we
note that if each broker has clearly defined responsibilities,
publications may then be delivered via some kind of targeted,
directional routing [3], reducing much the control overhead
to maintain the pub/sub mechanism. High Level Architecture
(HLA) is a U.S. military and IEEE standard for simulation
interoperability. Its Data Distribution Management (DDM)
allows simulation nodes (called federates) to specify sub-
scription regions over object attributes to receive updates sent
through update regions. DDM may be the closest example of
a spatial publish / subscribe. However, like Mercury, DDM’s
filtering is also very general and can be done over any attribute
values, making its efficient implementation non-trivial.



III. A BASIC MODEL FOR SPS
We argue that neither spatial query nor spatial multicast

satisfy sufficiently the basic requirements of MMVE systems,
where messages need to be delivered with minimal control
overheads and latencies. The excessive message overheads of
multicast, due to the inherent difficulty to choose the right re-
gion size, makes multicast inflexible to use [5]. The excessive
latencies due to the nature of query, and in between successive
queries, also makes spatial query inadequate for MMVE’s
real-time constrains [19]. From another perspective, query and
multicast both represent needed aspects of a complete system:
query indicates a subscription interest (i.e., receiving messages
from all nodes within an area), while multicast indicates a
publication interest (i.e., delivering messages to all nodes
within an area). Both aspects can also be understood as an
entity’s awareness (or focus) and effect (or nimbus) about
its surrounding [20]. Spatial publish / subscribe thus may
be a more suitable and complete mechanism. In fact, spatial
multicast and spatial query can be easily supported by a spatial
publish / subscribe mechanism, as we will show later.

Fig. 1. Schematic for a 2D Spatial Publish Subscribe (SPS). In a military
example, black dots may be soldiers, and publications may be weapon ranges,
while subscriptions may be the views of soldiers or radars. Note that a pub/sub
area can be of arbitrary size, shape, or direction.

We define a spatial publish / subscribe (SPS) as a mecha-
nism where each node within a distributed system can specify
a publication space and a subscription space. A node may send
a message to its specified publication space, which will then be
delivered to all nodes whose subscription spaces overlap with
the publication space (Fig. 2). We further allow these pub/sub
spaces be updated continuously with node movements (i.e., a
new space overlaps mostly with a previous space). Publication
and subscription requests are sent from a participating node
to an interest matcher whose main responsibility is to record
the requests and match a published message with potential
subscribers interested in the message (i.e., performing interest
management [21] between the publishers and subscribers).
Note that the SPS concept is general enough to be applied
to spaces of any dimension. However, for simplicity, we will
mainly discuss 2D spaces for this paper, and may refer to a
publication / subscription space equivalently as a publication
/ subscription area.

In a 2D SPS, there are thus four basic operations: point
publication, area publication, point subscription and area
subscription. A point publication is to publish a message at a
given spot, receivable by all nodes whose subscription areas
cover the spot; an area publication delivers a message to all
nodes whose subscription areas or points overlap with the
publication area; a point subscription allows a node to receive
all messages whose publication areas cover the subscription
point; and an area subscription allows a node to receive
all messages delivered by publication areas or points that
overlap with the subscription area. From another view, a point
publication is an area publication with a zero size; likewise, a
point subscription is an area subscription with zero size.

SPS can be seen as a specific form of content-based pub/sub
[2], [3], where the filtering criteria is based only on the spatial
aspect of the published messages, instead of other possible
criteria (e.g., experience points and levels of the avatars). As
such, we may divide and route the task of interest matching
very efficiently according to spatial domains, which is not
necessarily applicable when the whole message content is
subject to filtering (as done by Mercury [2] or DiGAS [17]).
In other words, instead of supporting a general content-based
publish/subscribe, by focusing only on the spatial filtering of
published messages, we can gain certain advantages in design
simplicity and execution efficiency.

Unlike spatial query, a message receiver in SPS need not
query continuously at different intervals to receive message
updates, once a subscription is made. Unless the subscription
area has changed, the message receiver need not re-send any
requests. The delay between the occurrence of an update and
the discovery of the update thus is reduced. Take user positions
as an example, in a spatial query approach (e.g., Colyseus [14]
or GP3 [15]), a moving actor node needs to register its new
positions at a recorder every once in a while (e.g., a P2P
overlay in Colyseus, or a server in GP3), and other users must
continuously query for updated positions within their AOI
neighborhood (i.e., performing neighbor discovery queries),
which will either: 1) not allow the most timely position updates
due to the query intervals or the time taken by the query
itself, or 2) cause excessive query messages be generated if
query intervals are too short apart. In an ideal SPS, after a
subscription request is made, no further continuous queries
are needed, message overhead thus is reduced. A published
message will also reach a subscriber directly, so the delay
between message generation and receival can be minimized.
The only disadvantage of a pure SPS against spatial query is
that SPS does not retain states, so if some already published
messages are required again (e.g., for a late joined node),
additional measure is needed. Luckily, we could use a state
manager to keep copies of the published messages or states,
and re-send those messages/states to any node interested in
past publications, as will be shown later.

Unlike channel-based multicast, where nodes within an
affected area will receive multicast messages regardless of
interests, SPS allows a more flexible and fine-grained approach
to message delivery. Often the receivers in a multicast would



either receive too many messages beyond their AOI (if the
region size is too large), or subscribe to many multicast
channels and face frequent channel switching (if the region
size is too small). Although spatial multicast provides a more
fine-grained messaging than channel-based multicast, the same
message receiver or sender cannot choose to have varying
messaging ranges. For example, a foot solider likely has
an AOI smaller than a ground radar, and thus might only
realistically observe nearby entities. In a spatial multicast,
anyone within the multicast range would receive the message
regardless of interest, so a moving entity cannot be observed
only by a distant radar but not the nearer soldier (who has
a smaller AOI and should not see the entity, see Fig. 2). By
specifying subscription areas, a node in SPS has full flexibility
to decide the types and the amount of messages to receive.

On the other hand, spatial multicast and spatial query can
be easily supported by SPS. Spatial multicast is actually a
special case of SPS, where all nodes perform area publications
and point subscriptions (or alternatively, point publications and
area subscriptions). Although spatial query cannot be directly
emulated with SPS, as spatial query is stateful (i.e., states can
be registered once and queried multiple times later), with the
support of a state manager that keeps the last published (i.e.,
most current) message or state, we can have the state manager
subscribe to an area, and return the latest messages or states
to any node that has requested to catch up.

Our definition for SPS leaves out the details for its imple-
mentation. A trivial implementation can be done with a simple
client-server architecture, where the clients are the message
generators / receivers (i.e., publishers and subscribers), and
the server is the interest matcher. All pub/sub requests thus are
sent from clients to the server, which keeps the requests (i.e.,
the interest expressions) and matches the received publications
with potential subscribers. One may also utilize bitmaps to
describe the spatial interest expressions for fast matching [22].
How to perform SPS more scalably with multiple interest
matchers (in a server-cluster or P2P overlay) is more so-
phisticated and requires more considerations. For example,
the subscription records have to be divided among several
interest matchers, and publication requests need to be routed
to the respective interest matchers efficiently (instead of being
flooded to all interest matchers as in DiGAS [17]). The
division or partitioning of the spatial domain can be done
in many different ways (e.g., regular grids, hexagons, strips,
triangles, quad-trees, or Voronoi diagrams, see [19] for a list of
references), with tradeoffs that may be application-dependent.
One also has to take note that updates in subscriptions may
take time before affecting future publications (e.g., a publi-
cation may reach an already expired subscription, or miss a
newly registered subscription). So how to perform subscription
updates efficiently and correctly is another major challenge.

IV. SPS APPLICATIONS

In this section we will show the usefulness of SPS in
supporting certain basic functions for VE systems, including
overlay, state, and content management.

Fig. 2. Limitation of a spatial multicast. The tank’s updates are sent to all
nodes within a given area. If the eclipse and circle represent the radar’s and
the soldier’s AOI, respectively, the incoming tank’s update messages cannot
be received only by the radar but not the soldier.

A. Overlay Management

Overlay management refers to the construction of P2P
overlays in addressing neighbor discovery (also known as the
local awareness property [11] or the awareness problem [23])
for each actor node in the system. The basic issue is: given
the virtual position of an actor, find the positions of other
actors within the given actor’s AOI. Neighbor discovery has
been the central issue since early P2P-based VE designs (e.g.,
Solipsis [11], VON [12], COVER [23], Colyseus [14], and the
more recent GP3 [15]). One can provide neighbor discovery
by utilizing a spatial query (as done by Colyseus or GP3) or by
a spatial multicast (as done by Solipsis or VON). However, as
mentioned earlier, spatial query introduces unwanted latencies,
while spatial multicast may generate extra message overheads,
and cannot support AOI of different interest ranges.

SPS supports neighbor discovery inherently in a fundamen-
tal and flexible way. Each actor node only needs to subscribe
for messages within its AOI, and announces its position as a
point publication whenever its position changes. As long as the
subscribed area also changes with actor movements, each actor
can learn about position updates as they occur. The discovery
of neighboring actors can also be tailored individually with
subscription areas of different sizes.

The only issue left is late joining, where a newly joined
actor node needs to learn about existing neighboring nodes.
With spatial query, this is addressed natively with the query;
while with spatial multicast, late joining is solved by requiring
each node to periodically send its current position. For SPS,
late joining can be addressed by requiring each node to notify
its own position to a new node whenever new nodes are
discovered (via the existing nodes’ area subscriptions). This
way, neither a registration for the positions of all nodes (as
needed by spatial query), nor a periodic re-send of positions
(as needed by spatial multicast), would be required.

B. State Management

As mentioned earlier, VE systems can be understood as
state machines that take events as input to modify the game
states, and produce updates to notify nodes that are interested
or affected by the changed states. This event - process - update
cycle thus is a basic building block for VE systems.



To support state management, we can utilize two layers of
SPS, one for events and another for updates. Each actor in
the system (e.g., the client node) would perform an area sub-
scription over its AOI in the update layer, and publish events
as point publications in the event layer. The arbitrator (e.g.,
the server node, or a super-peer in a P2P architecture [19])
would perform pub/sub in the opposite manner. An arbitrator
can perform an area subscription over its responsible region in
the event layer to receive events; and it can publish updates as
point publications in the update layer, at the locations of game
objects whose states have changed. This way, the arbitrator
would receive all the relevant event messages within its region
of responsibility. After processing the events and updating the
states, the arbitrator can then send updates back to the actors
who might be interested. The arbitrator also need not worry
about the different visibility ranges of the actor nodes, as nodes
with different subscription areas (e.g., a small area for a foot
soldier or a large area for a radar) would easily receive the
messages proper to their scopes of interest.

This design naturally lends itself to a scalable state manage-
ment where many arbitrators can jointly support a large-scale
VE with many actors. Other design issues worth considering
are cross-region consistency control, load balancing and fault
tolerance for the arbitrator nodes [19]. To deal with late joining
(i.e., a newly joined actor node learning about existing game
states), the arbitrator can send existing states to a new node
after detecting the new node’s presence from the event layer.

C. Content Management

Content management is another recent focus in VE designs,
and deals with game content that is becoming too large and
dynamic. Most existing VE systems require users to pre-
download or pre-install the content (e.g., 3D mesh models and
textures, animations and voice files) on the local machines.
However, it becomes inadequate when the content size grows
from the range of a few mega or giga bytes, to terabytes (e.g.,
Second Life has over 34 terabytes of content in 2007). Some
recent works (e.g., FLoD [24], LODDT [25], and HyperVerse
[26]) thus propose to use P2P networks to offload the content
delivery from server to clients. The basic idea is that as users
in a VE often have overlapped visibility, when they are nearby
to each others, the content required for download or rendering
can be obtained from not just the server, but nearby peers as
well. Current proposals basically consist of a discovery stage
and an exchange stage. In the first stage, each peer attempts
to find out which objects are to be downloaded, and which
peers might have those objects. This can be done in either a
distributed [24], [25] or centralized [26] manner. The second
stage concerns with how to perform content exchange with the
discovered peers, so that server resource usage can be reduced.

SPS may aid the discovery stage by requiring each peer
to subscribe for its AOI and publish its current positions or
content availability as point publications. This way, each peer
can learn of nearby peers, and also their content availability
from the SPS. Note that this is supportable with overlay
management. To discover the objects to download, we can

assign certain servers or super-peers as object managers that
manage and maintain the object states within specific regions.
Each object manager would perform an area subscription of
its responsible region to learn about the presence of peers in
its region. Whenever new peers arrive, the object manager
can directly notify the peers of object presence. Note that
the subscribed area needs to be slightly larger than the actual
responsible area (in fact, at least one AOI-radius larger), in
order to notify peers in neighboring regions whose AOI cover
the region. As no queries are needed, new updates (e.g., the
content availability of a certain peer) can be quickly delivered
to peers who are interested. We could also use different layers
of SPS for the discovery of different types of objects.

V. IMPLEMENTATION ISSUES

While SPS implementation is beyond our current scope,
some partial SPS implementations already exist as good refer-
ences (e.g., Chen et al. [27] propose a SPS that supports point
publications and area subscriptions for intelligent location-
based services). Here we briefly discuss two major issues: 1)
how to partition the VE to assign interest matchers, so that
the pub/sub messages can be routed efficiently, and 2) how
often should subscriptions be performed and maintained, so
that subscription message overheads and delays are minimized.

As mentioned earlier, existing partitioning methods can be
utilized for the first issue (e.g., fixed partitioning such as
grids and hexagons, or dynamic partitioning such as strips and
Voronoi diagrams [19]). If neighboring interest matchers are
mutually aware of each other, pub/sub requests can be sent to
any interest matchers and be forwarded to the responsible one
via greedy forward (i.e., always forward the message to the
neighbor closest to a target location). For the second issue,
a subscription should be updated whenever the subscriber
has moved or changed its subscription. However, to avoid
excessive subscriptions, they can be sent to interest matchers
only periodically with a slightly increased subscription area
[26]. In some cases, predictive subscriptions may also reduce
the potential latency caused by routing the subscriptions.

VI. CONCLUSION

In this paper, we have identified spatial publish / subscribe
(SPS) as a useful primitive to VE applications. In the most
simple terms, SPS provides a node to subscribe to a specific
area within a VE to receive messages, and allows a node to
publish a message to an area, receivable only by subscribers
whose previous subscriptions match (i.e., overlap) with the
published area. We have given examples on how SPS can sup-
port overlay, state, and content management, and demonstrated
how existing systems can be reduced to or modeled by SPS.

We believe that SPS is a fundamental construct underlying
existing VEs. As such, understanding its applications and
limitations is of importance to MMVE researchers and de-
velopers. SPS can be implemented easily with a single server,
but creating a scalable SPS with multiple interest matchers
is still an open problem, and may hold the key to build VE
systems with millions or more concurrent users.



ACKNOWLEDGMENTS

This work was supported by National Science Council,
Taiwan, R.O.C. under grant 95-2221-E-008-048-MY3. I would
like to thank Chuan Wu, Eliya Buyukkaya for helpful discus-
sions, the anonymous reviewers for useful comments, and Prof.
Shing-Tsaan Huang, Prof. Jehn-Ruey Jiang for their supports.

REFERENCES

[1] B. Knutsson et al., “Peer-to-peer support for massively multiplayer
games,” in INFOCOM, 2004, pp. 96–107.

[2] A. R. Bharambe, S. Rao, and S. Seshan, “Mercury: A scalable publish-
subscribe system for internet games,” in Proc. NetGames, 2002, pp. 3–9.

[3] A. Dattaz, M. Gradinariu, M. Raynal, and G. Simon, “Anonymous
publish/subscribe in p2p networks,” in Proc. IPDPS, 2003.

[4] M. R. Macedonia et al., “Exploiting reality with multicast groups,” IEEE
Computer Graphics and Applications, vol. 15, no. 5, pp. 38–45, 1995.

[5] E. Lety et al., “Score: A scalable communication protocol for large-scale
virtual environments,” IEEE TON, vol. 12, no. 2, pp. 247–260, 2004.

[6] T. Sweeney, “Unreal networking architecture,”
http://unreal.epicgames.com/network.htm, 1999.

[7] P. Rosedale and C. Ondrejka, “Enabling player-created online worlds
with grid computing and streaming,” Gamasutra Resource Guide, 2003.

[8] P. Bettner and M. Terrano, “1500 archers on a 28.8: Network program-
ming in age of empires and beyond,” Proc. GDC, 2001.

[9] J. C. Oliveira and N. D. Georganas, “Velvet: An adaptive hybrid
architecture for very large virtual environments,” Presence, vol. 12, no. 6,
pp. 555–580, 2003.

[10] C. GauthierDickey et al., “Using n-trees for scalable event ordering in
peer-to-peer games,” in Proc. NOSSDAV, June 2005, pp. 87–92.

[11] J. Keller and G. Simon, “Solipsis: A massively multi-participant virtual
world,” in PDPTA, 2003.

[12] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: A scalable peer-to-peer
network for virtual environments,” IEEE Network, vol. 20, no. 4, 2006.

[13] S. Douglas et al., “Enabling massively multi-player online gaming
applications on a p2p architecture,” in Proc. ICIAD, December 2005.

[14] A. Bharambe et al., “Colyseus: A distributed architecture for multiplayer
games,” in NSDI, 2006.

[15] M. Esch, J. Botev, H. Schloss, and I. Scholtes, “Gp3 - a distributed
grid-based spatial index infrastructure for massive multiuser virtual
environments,” in Proc. P2P-NVE, 2008.

[16] S. Fiedler, M. Wallner, and M. Weber, “A communication architecture
for massive multiplayer games,” in Proc. NetGames, 2002, pp. 14–22.

[17] A. Bonotti, L. Ricci, and F. Baiardi, “A publish subscribe support for
networked multiplayer games,” in Proc. IMSA, 2007, pp. 236–241.

[18] K. L. Morse and J. S. Steinman, “Data distribution management in the
hla: Multidimensional regions and physically correct filtering,” in Proc.
Spring Simulation Interoperability Workshop, 1997.

[19] S.-Y. Hu, S.-C. Chang, and J.-R. Jiang, “Voronoi state management for
peer-to-peer massively multiplayer online games,” in Proc. NIME, 2008.

[20] S. Benford and L. Fahln, “A spatial model of interaction in large virtual
environments,” in Proc. ECSCW, 1993, pp. 109 – 124.

[21] K. Morse, L. Bic, and M. Dillencourt, “Interest management in large-
scale virtual environments,” Presence, vol. 9, no. 1, pp. 52–68, 2000.

[22] S. Lynch, “A spatial publish/subscribe model for virtual worlds,”
http://seanlynch.livejournal.com/13798.html, 2009.

[23] P. Morillo et al., “Providing full awareness to distributed virtual envi-
ronments based on peer-to-peer architectures,” LNCS, vol. 4035, 2006.

[24] S.-Y. Hu et al., “Flod: A framework for peer-to-peer 3d streaming,” in
Proc. INFOCOM, 2008.

[25] J. Royan et al., “Network-based visualization of 3d landscapes and city
models,” IEEE CG&A, vol. 27, no. 6, pp. 70–79, 2007.

[26] J. Botev et al., “The hyperverse - concepts for a federated and torrent-
based ”3d web”,” IJAMC, vol. 2, no. 4, pp. 331–350, 2008.

[27] X. Chen, Y. Chen, and F. Rao, “An efficient spatial publish/subscribe
system for intelligent location-based services,” in Proc. 2nd international
workshop on Distributed event-based systems (DEBS), 2003, pp. 1–6.


