
HyperVerse: Simulation and Testbed Reconciled
Jean Botev†, Markus Esch†, Hermann Schloss∗, Ingo Scholtes∗ and Peter Sturm∗

∗University of Trier
System Software and Distributed Systems

D-54286 Trier, Germany
Email: {schloss,scholtes,sturm}@syssoft.uni-trier.de

†University of Luxembourg
Faculty of Sciences, Technology and Communication

1359 Luxembourg, Luxembourg
Email: {jean.botev, markus.esch}@uni.lu

Abstract—When dealing with dynamic large-scale topologies
such as those underlying peer-to-peer (P2P) distributed virtual
environments (DVE), one inescapably reaches the point where
either a) simulations lack human behavior and assessment or
where b) practical experiments on a small scale do not yield
significant results. The restrictions resulting from the separation
of simulation and testbed environments hinder a comprehensive
assessment and efficient development of adaptive algorithms and
techniques for DVEs as they are investigated in our HyperVerse
research project. In this article, we present a hybrid evaluation
system designed to combine the advantages of simulations and
testbeds. The proposed infrastructure exhibits great flexibility
particularly alluring in view of the multitude of potential research
in the context of DVEs.

I. MOTIVATION

It is beyond controversy that the design of scalable DVEs
is a challenging task. Their commissioning and maintenance
being both laborious and costly, all concepts, topologies and
algorithms utilized need to be rigidly tested and evaluated well
in advance. For this purpose DVE designers and researchers
usually rely on two separate strategies: Computer simula-
tions are used to quickly obtain reproducible results, while
small-scale testbed deployments are made to obtain a more
realistic view under real-world conditions. Both approaches
have unique advantages and disadvantages when evaluating
massive-scale distributed virtual environments.

The foremost advantage of testbed deployments is the fact
that they provide a realistic view of a system’s performance
under real-world conditions such as realistic network latency,
congestion, user behavior and so forth. Unfortunately the
reproducibility and tracing of results is hampered by the real
world’s intrinsic non-determinism and the scale is limited by
the availability of physical devices. The fact that real user
behavior is essential for realistic tests furthermore complicates
the usage of research testbeds like e.g. PlanetLab1. The us-
ability of practical tests in research is usually restricted by the
comparably small number of available physical machines and
staff. While this could theoretically be alleviated by including
external testers, arousing the interest of a massive number
of people has proven to be difficult. Furthermore, quickly
obtaining results is prevented by the necessary deployment of
software, and the development of test prototypes is complicated
by the heterogeneity introduced by external resources. At this
point, simulations provide adequate means to evaluate DVE
concepts using a moderate amount of resources. Here the
number of simulated entities can be varied within a wide range,
being limited only by available processing capacities and time.
Further advantages include that simulations offer the possibility

1http://www.planet-lab.org

to deterministically perform tests in a synthetic environment
in which every aspect can be controlled by the experimenter.
Algorithms, parameters and topologies can be compared under
different conditions e.g. using different user mobility models,
churn dynamics, simulated network latencies and so forth
while leaving other simulation parameters unchanged.

Within the HyperVerse project [1], both simulations and
practical tests have been performed in the past to evaluate its
underlying concepts. Simulations have been performed using
the TopGen environment [2], which is being developed within
our group since 2006. Practical tests on small scales have so far
been conducted using an actual DirectX-based implementation
of the algorithms and topologies in question. During these
tests, implementation and deployment has proven to be time-
consuming, especially dealing with external testers and firewall
traversal for peer-to-peer topologies.

Acknowledging the fact that both approaches, simulation
and testbeds, offer unique opportunities, a combination of
both seems alluring. Within our project the need for such a
hybrid evaluation system has been additionally fueled by a
special scenario: For a couple of years, our group teaches basic
programming principles to secondary level pupils at the age
10 and above. For this we embrace both well-known concepts
like simplified programming environments as well as novel
approaches like learning and interacting in distributed virtual
environments. The latter naturally raises the question whether
both projects can synergetically benefit from each other by (a)
enlisting the group of pupils as “testing personnel” and (b)
using our DVE research prototype as software platform for
teaching. In this article we discuss a hybrid evaluation system
that has been developed for this purpose. It allows to use a
generic user client implementation to be used for the evaluation
of different algorithms and topologies without having to deploy
any code changes. These actual clients are connected to a
simulation environment which simulates actual communication
and data distribution while possibly additionally simulating
hundreds of more clients.

The remainder of this article is organized as follows: Having
laid out the general architecture of the implemented system in
section II, in the following section III we demonstrate how it
has so far been used to evaluate concepts and topologies in our
HyperVerse research project. After having discussed related
work in section IV, we conclude with our contributions and
propose the usage of our evaluation system within the DVE
research community.

II. A HYBRID EVALUATION INFRASTRUCTURE

In this section, we seek to introduce the architecture of
our hybrid evaluation infrastructure. Herein lightweight client



applications can be attached to simulations running in a central
simulation server in real-time. Actual users can interact with
simulated entities and simulated entities can be programmed
to react to user interaction. The central component of this
system is TopGen, an open source simulation framework for
graph and network mesoscopics that is being developed in our
group since 2006. TopGen has so far proven to be capable
of simulating systems as diverse as router topologies [2],
self-organized monitoring schemes for complex networks [3],
DVE topologies and algorithms [1], [4] as well as bio-inspired
self-synchronization phenomena [5]. The TopGen simulation
framework runs on top of the Microsoft .NET or MONO2

runtime environment, the latter being an open source im-
plementation of the ECMA/ISO standard for the Common
Language Infrastructure (CLI). MONO is freely available for
a multitude of operating systems and processor platforms.
The basic architecture of TopGen is shown in Figure 1. In
order to maximize platform independence and provide for a
scripted batch operation, the graphical user interface (GUI) of
TopGen has been decoupled from the actual framework. By
this means, a memory-efficient command line version can be
started without the GUI portions of the software. Furthermore
it rids the core framework as well as the command line
interface from any particular GUI library dependencies and
thus furthers platform independence.

The main advantage of TopGen is that it offers a generic yet
intuitive approach to network simulations based on so-called
Experimentation Modules. These modules may contain topol-
ogy generation schemes, metrics computations or simulations
of complex network algorithms and can be freely combined
in order to facilitate a “building blocks”-like definition of
complex simulation experiments. Integrated data logging and
plotting facilities as well as a real-time visualization compo-
nent complement the environment’s functionality.

TopGen Framework

Extensions

Experimentation Modules

Graph
Facilities Geometric 

Graph
Cellular 

Automata

Experimentation

(Data Logging,
Multicore Support )

Module 
A

Module 
B

Module 
C

TopGen GUI
Real-Time

Visualization

Video 
Recording

Real-Time
Data 

Monitoring

Experiment
ManagementGraph Management

User
Interface

...

Fig. 1. Basic TopGen Architecture

At the very core of the TopGen framework stand its graph
facilities. In this component, thread-safe abstractions of ba-
sic graphs, vertices and edges as well as their visualizable
counterparts are implemented. In order to facilitate scalable
experimentation modules, special support to utilize the inherent
parallelism often found in network algorithms is provided.
A special module allows to submit tasks that are processed

2http://www.mono-project.com

per-vertex on all available processor cores in parallel. The
main advantage of using this module is, that the implementor
benefits from the future availability of additional processing
cores without the need to explicitly deal with multi-threaded
programming and synchronization issues. Switching between
single-threaded or parallelized code is merely a matter of
changing the header of a loop iterator. An important aspect
when using multi-threaded simulations is to retain deter-
minism. For this purpose, transaction-based graph and state
abstractions are used. Changes performed by a certain thread
are not made visible to other threads until all parallel tasks
started in a specific simulation step have been completed.

The experimentation component provides a framework that
can be used to implement custom experimentation modules.
It provides distinct simulation modes for modules that (a)
compute graph and network metrics (e.g. diameter, degree
distribution, etc.), (b) hook into deterministic, discrete time-
step simulations by subscribing to certain events (e.g. vertex
added, vertex removed, simulation step, etc.) or (c) intend to
perform self-paced (non-deterministic) simulations in a self-
managed thread. The experimentation component also provides
a framework that can be used to enrich modules with meta-
information like e.g. which graph types a module should
be allowed to operate on or how result data sets shall be
interpreted. Based on the CLI’s powerful reflection mechanism,
user-implemented experimentation modules can be attached
or detached to simulations dynamically at run-time without
interrupting running simulations.

Apart from its core components, the TopGen framework
contains a simple model that allows to extend the framework
by custom graph-based abstractions. These can e.g. be used
in own experimentation modules while harnessing the power
of TopGen’s existing components. So far, extension modules
implementing abstractions for cellular automata, large Internet
router networks and geometric intersection graphs have been
implemented. Using a circle as geometric intersection primi-
tive, the latter can e.g. be used to simulate mutual avatar visibil-
ity in DVEs. Finally the framework is complemented by two
components managing the composability of experimentation
modules as well as the loading and saving of graphs.

Although all experimentation modules combined to a certain
simulation run share a common graph topology, situations
with local and possibly inconsistent per-vertex graphs (as
e.g. commonly found in P2P networks) can be simulated in
different ways. Since TopGen supports directed graphs, it is
simple to represent vertices with differing/inconsistent neigh-
bor lists. Alternatively (e.g. if multiple views with inconsistent
undirected edges are required) modules are free to additionally
maintain and manipulate local per-vertex graphs.

From the perspective of a user willing to implement a
custom experimentation module, its interface to the TopGen
framework is of utmost importance. In section III it will be
described in more detail by presenting an example experi-
mentation module. By this means, the programming model
underlying TopGen will be exemplified.

A. Simulation Mediation

So far, only TopGen’s basic simulation facilities have been
described. Through extending TopGen with a special experi-
mentation module, a hybrid setting can be achieved in which
TopGen additionally acts as a DVE server application. This
special module - the so-called Simulation Mediation module
- provides a network-accessible message sink to which actual
3D client applications can connect. The module’s main task



is to mediate between incoming messages and simulation
events to which other experimentation modules can subscribe.
Furthermore, the Mediation module relays incoming messages
to other clients based on the currently simulated network
topology. By this means, any simulation implemented in an
experimentation module (or a set of modules) can be enriched
by actual clients that interact with the simulation in real-
time. A basic example of such a hybrid simulation which
will be described in more detail in section III is a setting in
which a customizable number of simulated avatars (moving
e.g. according to SecondLife3 avatar trace files) together with
a number of avatars controlled by actual users are used to
simulate traffic from a P2P-based retrieval of 3D contents. A
network view of such a hybrid scenario is shown in Figure 2.
Here a number of simulated entities (denoted by the letter S)
is enriched with four real clients A, B, C and D which connect
to TopGen via its Mediation module.

Internet

A

A B

B

C

C

D

DS

S

S S

S

S

S

Simulated
Network
Topology

TopGen 
Simulation Server

Client Client Client Client

Fig. 2. Network Layout of the Hybrid Evaluation System. Simulated entities
in the network topology are labeled with S, while representations of actual
clients are labeled with their corresponding letter.

All messages received by the Simulation Mediation module
are translated to graph events and potentially relayed to other
nodes via the simulated network. The decision to which
other clients a message is relayed can be based on a user-
implemented routing strategy. Since TopGen has a notion
of router-level graphs and contains a module for generat-
ing realistic router distributions, connectivity and latencies,
artificial message propagation delays may be induced based
on a customizable router-level graph. For this purpose either
virtual overlay nodes can be connected to simulated routers or
precomputed end-to-end latency matrices generated by TopGen
or other tools can be used. So far, no technical details of the
3D browsing application have been given which can be used
to actually connect to and participate in a simulation. In the
following section, we intend to provide a better understanding
of its architecture and its underlying principles.

3http://www.secondlife.com

TopGen

Experimentation Modules

3D Browsing Client

Extensions

Message Bus

Bus 
Mediation

3D Engine

Content 
Visualization

Simulated Network Topology

Microsoft XNA Framework

User
Input 
Mgmt

Simulation
Mediation

N
et

w
or

k

... ...

Avatar 
Visualization

Input 
Processing

Fig. 3. Basic Architecture of the 3D Browsing Client

B. 3D Browsing Client

The 3D browsing client is an important component in the
overall evaluation system. It has been implemented on top of
the Microsoft XNA Framework4. As described above, its main
purpose is to enable actual users to connect to a simulated
DVE. As such, it might also be considered an external 3D
visualization component which can be used to jump into
a running TopGen DVE simulation. In fact, the main idea
behind the 3D browsing client’s architecture is to provide
for its flexible usage. We tried to achieve this goal by not
implementing a particular 3D browser but rather providing a
generic framework in which modules can be used to implement
various browsing applications. For this purpose custom-defined
modules can be used to customize every aspect like e.g. content
visualization, generated messages or user controls. Another
important aspect is that the browser shall not contain any
code specific to a certain DVE algorithm or topology. By this
means, no redeployment is required when other topologies
or algorithms needs to be used. Its basic functionality is to
provide an infrastructure that allows a translation of user-input
to messages sent to TopGen’s Simulation Mediation module as
well as providing a 3D visualization of the actual environment
based on messages relayed by TopGen. The advantage of
sending all messages to the central TopGen simulation server
is that the relaying of messages can be left to TopGen.
By this means, the actual topology by which both real and
simulated clients are interconnected can be defined within a
TopGen experimentation module. Due to the dynamism of
TopGen, this module can even be switched at runtime without
having to interrupt the simulation or stop actual clients. Having
motivated its basic underlying principles, the basic architecture
of the 3D browsing client is shown in Figure 3.

The so-called Message Bus is the browser’s basic commu-
nication abstraction by which all of its remaining components
are interconnected to each other as well as to the TopGen

4http://www.xna.com/



server. All messages on this bus are typed via descriptive XML
contracts and categorized into so-called Local and Remotable
messages. In addition to being delivered locally, a special
Bus Mediation component automatically serializes Remotable
messages and forwards them to the Simulation Mediation
module in a running TopGen simulation via a TCP connection.
As a general rule, messages that affect other avatars and com-
ponents within the DVE should be defined as Remotable, an
example for this being messages related to avatar movement or
interaction. The decision whether a message type should be Re-
motable is however left to the implementor of the type. Locally,
messages are transmitted between software components via
the CLR’s efficient eventing mechanism. A special user-input
component translates input like e.g. pressing a key or moving
the mouse to messages and transfers them to the Message
Bus. Another (customizable) component can subscribe to these
events, e.g. locally visualize avatar movement and produce
an appropriate Remotable message to notify nearby actual or
simulated clients.

Regarding the visualization of content, again a customizable
path has been taken. Rather than predefining content types,
custom modules can be used to visualize any XNA-renderable
content based on their current state and incoming messages.
The source of this content can be chosen by the module, i.e.
either a local resource (in scenarios where content is pre-
distributed), the payload of a message routed via TopGen
or an arbitrary network accessible external source. The full
power of this approach becomes apparent when looking at
typical scenarios occurring in the DVE research community.
Here, often research prototype clients are deployed on a
small scale either for the interested general public, the testing
community or collaborating partners. With our centralized
hybrid simulation/testbed approach, such small-scale deploy-
ments (in a range between dozens to a few hundred concurrent
users) are simplified in the following ways: Testing different
network topologies and overlay topologies does not require
a redeployment of the clients or even the interruption of
the service or simulation. It is a mere matter of activating
another experimentation module in the TopGen simulation
server. Furthermore, results of an experiment can easily be
collected and the state of the system can be visualized by a
central instance in real-time. Video-recording facilities that are
integrated into TopGen’s visualization component can even be
used to record the global behavior and mobility of users. When
addressing P2P topologies for DVEs, another important issue
is the handling of end-user firewalls. Another advantage of
a TopGen-based small-scale deployment of a DVE prototype
is the fact that the clients’ only communication channels are
client-initiated TCP connections. Since the same connections
are used by the TopGen server’s Simulation Mediation module
to relay messages from peers, firewall traversal is not an issue.

III. A CASE STUDY

So far the TopGen simulation framework has been de-
scribed at a mere abstract architectural level. At this point,
the reader is probably interested in a more detailed case study
exemplifying the programming model underlying TopGen’s
experimentation modules. For this, we describe a module that
has been implemented in the HyperVerse context in order to
simulate the speculative hoarding approach to content retrieval
that is described in [3]. In order to be able to follow the
implementation details, the scheme will be briefly described
in the following paragraph. The source code of this module is
included in the freely accessible TopGen repository which is

available from our project’s website 5.
1) Epidemic Hoarding: Hot spot regions arising from high

object densities represent a fundamental problem in distributed
virtual environments. One facet of this problem is the fact, that
clients entering hot spot regions may be required to load a
large body of data within a short time-frame. This problem is
independent from bandwidth available at the content provider.
The limited bandwidth of the client’s network connection
represents a bottleneck that can prevent timely data availability
and thus lead to notable load delays. In order to mitigate
this problem, a hot spot aware prefetching scheme has been
developed. The basic idea is to constantly use a fixed fraction
of free network bandwidth for hoarding data selectively from
crowded regions in order to mitigate load delays when the
user actually enters them. The problem with this approach
is that clients need a constantly updated view of the DVE’s
current load distribution. In [3], a self-organized and scalable
solution based on fixed-size random information exchanges
with a single one-hop neighbor has been presented. This can
be achieved by considering objects and avatars as physical
particles having a certain mass that reflects the communication
effort involved when loading the object. Each client can simply
calculate the cumulative mass and the center of mass within
its own area of awarenesses. This information, along with
a list of preliminary ”most crowded regions” based on the
locally available information can then be exchanged with a
random neighbor. Based on the epidemic aggregation algorithm
presented in [6], list entries quickly converge towards the actual
global maxima. In [3] it has been shown that this hoarding
mechanism is able to efficiently mitigate load delays in hot
spot regions.

2) Simulating Epidemic Hoarding: Based on the concept
that has been described in the previous paragraph, in this
section we intend to describe how the scheme can be simulated
in TopGen. The starting point for the implementation of a Top-
Gen experimental module is to extend the abstract framework
class TopGen.Experiments.ExperimentalModule. Two special
methods Start and Stop will be invoked by the framework
when (a) a deterministic, event-based module is attached to or
detached from a simulation or (b) when a non-deterministic
simulation module operating in a custom thread shall start
or stop operation. By assigning framework-defined attributes
to the implemented module, the implementor can explicitly
tell TopGen which kind of threading mode is desired for the
module. For the epidemic hoarding simulation, we seek to
utilize the event-based mode which hooks into discrete events
generated outside the module. This mode’s main advantage is
being deterministic in the sense that the same random seed will
generate exactly the same sequence of events. Accordingly in
our case we would assign the attribute

[ExperimentType(ExperimentType.Event)]

to the module implementation. The signature of the Start
method that can be implemented to perform custom module
initialization reads:

Start(ref Graph g, Settings s, SimulationContext context);

In the first argument, a graph is given on which the exper-
imentation module can operate. In the case of the epidemic
hoarding scheme we seek to implement, this is a collection of
vertices representing clients along with their avatars’ position
in the DVE. An edge between two vertices represents a con-

5http://hyperverse.syssoft.uni-trier.de



nection in the underlying network topology. It is not necessary
to define the exact topology in the epidemic hoarding scheme.
The topology can either be implemented in a separate module
or TopGen’s integrated geometric graph abstraction can be
used. In the latter case, avatars within a certain visibility range
are automatically interconnected by the framework. By default,
the graph that is passed to a simulation module can be of any
type inheriting the framework’s basic Graph class. Often a
module implementor wishes to restrict the types of graphs on
which the module can be started to a certain subset. In our case,
we need a notion of a geographic position for each vertex. This
can be enforced by assigning the following attribute

[AcceptedGraphType(typeof(GeometricGraph))]

which restricts the application of the module to graph types
that are subclasses of the framework’s basic geometric graph.
To implement modules that initially generate graphs (like
in our case a geometric graph consisting of a customizable
number of randomly placed vertices), one can explicitly allow
TopGen to pass an initial null reference by attaching the
attribute [AcceptsNullGraph(true)]. A module can then create
an arbitrary graph and pass the result of this generation back to
the environment where downstream modules can use them for
simulations. A module for generating arbitrarily sized random
geometric graphs is included in TopGen and can be used to
create the initial graph for our epidemic hoarding simulation.
In the remainder of this section, a vertex in the graph will
be denoted as simulated client. Depending on a graph’s type,
the graph instance as well as the vertices provide certain
events that can be used to react to simulation events. An
example for such an event in geometric graphs is the vertices’
OnMove event, which will be fired whenever the geographic
position of a vertex changes. The epidemic hoarding scheme
needs to subscribe to this event in order to update a list of
objects in the client’s area of interest whenever the client’s
avatar has changed position. Technically, by subscribing to an
event, a function pointer (or delegate) is passed to the eventing
infrastructure of the CLI that will be used to invoke a user-
defined handler whenever the event occurs.

The second argument in the signature of the Start method
is an object containing custom settings for a module. The
exact type of this object can be specified by the implementor
of a simulation module, all user-defined public fields serving
as simulation parameters that can be dynamically set and
changed via the TopGen GUI. In the case of the epidemic
hoarding simulation module, parameters contain the number
of simulated objects, parameters influencing their distribution
and sizes, the clients’ bandwidths and so forth. Based on these
initial settings, modules usually need to perform some kind
of initialization before the simulation starts. In the epidemic
hoarding case, this e.g. involves the creation of a number of
objects with their corresponding simulated transmission sizes.
In order to simulate data transmissions, the module uses per-
vertex download queues and caches that can take individual
object data blocks. The notion of objects, corresponding data
blocks and the implementation of a caching scheme has been
implemented in a dedicated TopGen extension and can be used
by simulations right away. A client’s downlink bandwidth can
be simulated on a per-step basis by moving a limited number
of object data blocks from the download queue of a vertex to
its cache.

The third and final argument of the Start method is a
reference to the so-called SimulationContext, an object which
- amongst other things - provides the simulation’s unique time

frame by producing tick events in adjustable intervals. This
time frame is the same for all modules attached to the same
simulation. Another important task of the SimulationContext
is the provision of a transaction-based storage for arbitrary
data that can be shared across modules. To retain determinism
in multi-threaded simulations, changed data are made visible
to other modules not before all parallel processing threads
started in a certain simulation step have been completed. In
order to perform a computation in each discrete time step of a
simulation, modules can subscribe to a special OnTick event.
For the epidemic hoarding module, in each step several actions
are performed for each vertex in the graph (and thus DVE
client):

• A random neighbor is determined with which information
on cumulative particle mass, center of mass and a list of
most-crowded spots is exchanged and aggregated.

• A number of data blocks limited by the client’s per-step
bandwidth is moved from the download queue to the
cache. Blocks in the download queue are prioritized based
on the object’s distance to the client’s current position.

• In case there is remaining bandwidth, the hoarding of
object data blocks from within predicted hot spot areas is
simulated in the same way as described above.

• For both previous steps, a per-vertex (least recently used)
caching strategy is used

Finally, the Stop method needs to be implemented in order
to unsubscribe from the vertices’ OnMove and the Simulation-
Context’s OnTick events.

3) Composability with other modules: So far, the epidemic
hoarding scheme has been implemented to operate on a ge-
ometric graph created outside the module and passed to it
when the simulation starts. It has not yet been described where
either the network topology or the mobility of (simulated)
avatars is implemented. At this point, it is important to note
that both is independent from the epidemic hoarding module.
In a hybrid scenario, both might stem from the Simulation
Mediation module, i.e. real clients joining the system will
trigger the creation of vertices and actual user-input will be
reflected in vertex mobility. In scenarios with simulated users,
both needs to be done by other modules that can be attached
to the simulation and which share the same SimulationContext.

Simulated mobility can be implemented by modules which
- in each simulation step - change the position of each vertex
of the geometric graph according to a certain model. While
custom models can be implemented in a similar fashion as
described in the previous paragraph, there are a couple of
pre-defined models that can be attached to simulations right
away. In addition to the well-known random waypoint model,
and a (probably more realistic) model in which vertices move
towards crowded regions with higher probability, TopGen also
comes with a module that allows to replay avatar trace files
from SecondLife that have been recorded and made available
to the public in [7].

4) Evaluation: Another important aspect of implementing
simulations in TopGen is data evaluation. For this, the frame-
work provides a special component that can be used to log
result data sets produced by experimentation modules. Logged
results can automatically be written to log files or plotted
in real-time. Technically experimentation modules can create
custom-defined result structures and post them to the analysis
component where they will be buffered. In the epidemic
hoarding example, the module can compute e.g. in each step
the number of objects in the field of view for which not all
data blocks reside in the client’s cache, a number representing



perceivable load delays. At the end of the simulation step, the
current result structure can be posted to the environment via a
special call. The contained result data fields will be accessed
by TopGen via the CLI’s reflection mechanism.

IV. RELATED WORK

PlanetLab and G-Lab 6 are research testbeds supporting the
development of new network technologies such as distributed
storage, network mapping, P2P systems, distributed hash ta-
bles, and query processing. However, just as in simulations,
user behavior can only be simulated since tests run in an
unattended fashion. Furthermore, access to those testbeds is
limited and the deployment is comparably laborious.

Our hybrid approach has been inspired by the JAVA-based
simulation platform JANE [8], which has been developed in
our group for a past research project. The JANE software can
be used in a pure simulation mode, in a hybrid setting with
real devices being attached to a running simulation and, finally,
in a setting using real devices only. Developed to support ad-
hoc network researchers in application and protocol design it
addresses a different application scenario though. Other hybrid
approaches in the domain of sensor networks include e.g. the
system described in [9].

The authors of [10] describe the Generic Visualization
System (GVS), which combines physical simulations and a
real-time visualization to display results in a realistic 3D
environment. For this, it can also merge inputs from different
simulation programs running simultaneously. Developed with
a clear focus on simulating military operations and without
notion of a customizable underlying network topology, it is
however not applicable in our scenario.

V. CONCLUSION

In this article, we described a hybrid evaluation infrastruc-
ture that combines simulations of a large number of entities
with a small-scale testbed deployment. At this point we must
emphasize that our evaluation system is not intended to be a
scalable DVE hosting solution for large-scale deployments. Al-
though we are currently looking into the possibility to support
a larger amount of users by adding cluster support, the current
centralized approach limits the number of connectible actual
clients to typically a few dozens or a few hundreds (depending
on the complexity of the simulated topology, data traffic and
used hardware). The main intention of our system is to provide
a rapid prototyping and simulation tool for DVE implementors
and the scientific community alike in which simulations of
massive numbers can be enriched with a moderate number of
actual clients and vice versa. The main advantages of such a
hybrid approach are the following:

• It saves implementation efforts since modules imple-
mented for simulation can be used to drive actual exper-
iments and vice versa. Furthermore, the implementation
of topologies for testbeds is simplified by TopGen’s high-
level graph and communication abstractions.

• Actual 3D clients can be used to get a first-hand view of
a simulation in real-time. They might thus also be seen as
3D visualization clients that can be attached to a running
simulation, possibly without interfering with it.

• Especially in the context of DVEs, there are issues that are
hard to evaluate by metrics, like e.g. the users’ perception
of certain latency characteristics, inconsistent views, load
delays, etc. A hybrid mode provides the possibility to

6http://www.german-lab.de

simulate a large back-end system while letting actual users
judge the perceived quality of service.

• It allows to easily extract traces of real user mobility
and behavior as well as to study the interdependencies
of simulation mobility and user behavior. In this respect,
TopGen provides means to extract and validate new
mobility and behavioral models.

Finally, in the following we intend to summarize some
technical and practical advantages of the proposed system.

• By disabling the possibility to attach real clients, TopGen
can be used in a pure simulation mode with simulations
being deterministic in the sense that any run can be
reproduced exactly. In this mode, TopGen can handle
network topologies with as much as several hundred
thousand simulated nodes.

• Due to TopGen’s modular architecture, avatars using sim-
ulated mobilities based on models (like e.g. random way-
point) can easily be combined with trace-driven avatars.

• TopGen can be run in a pure testbed mode if no simulated
entities are used. In this case, extensive logging, tracing
and evaluation is facilitated by the fact that all clients
connect to a central machine. When using P2P topologies,
messages are routed within a virtual network controlled by
user-implemented modules. In this case, TopGen acts as
gateway to the simulated network and performs routing
based on the simulated topology. While it is clear that
the centralized approach sacrifices scalability, for the
targeted number of attached real clients we argue that
the advantages outweigh this disadvantage.

• In a hybrid mode, real clients can be combined with sim-
ulated entities (based on mobility models and/or mobility
traces).

• In all of the above modes, the same implementation of
algorithms and topologies can be used.

• In all modes, simulated topologies, algorithms as well as
any dependent parameters can be changed in real-time
without interfering with users currently in the system.

• Clients can be deployed without dealing with complex
firewall traversal while at the same time utilizing simu-
lated P2P topologies.

• The simulation framework provides support for multi-
processor platforms while retaining the determinism of
single-threaded simulations by means of a transactional
memory abstraction.

We conclude this article by pointing out some open issues.
Although all components of the infrastructure (the TopGen
simulation environment, the Simulation Mediation module as
well as the 3D browsing client) have been implemented and
tested, an extensive performance evaluation must be considered
future work. So far, only TopGen’s scalability on multi core
processors has been evaluated and found to be linear for typical
network algorithms. Further studies regarding the exact amount
of supported users and simulated agents as well as its inter-
dependency with the simulated network topology are required
to prove the suitability in practical scenarios. Regarding our
hybrid approach to DVE evaluations, the interrelations between
simulated and real agents as well as their influence on realism
require further attention.

All components of our proposed infrastructure are available
both as source code and binaries from our project’s website.
At this stage we would like to encourage the community to
test and evaluate our toolkit. We also actively solicit feedback
and suggestions for its future development.



REFERENCES

[1] J. Botev, M. Esch, A. Höhfeld, H. Schloss, and I. Scholtes, “The hyperverse
- concepts for a federated and torrent-based ”3d web”,” The 1st International
Workshop on Massively Multiuser Virtual Environments (MMVE), 2008.

[2] I. Scholtes, J. Botev, M. Esch, A. Hoehfeld, H. Schloss, and B. Zech, “Topgen -
internet router-level topology generation based on technology constraints,” in Pro-
ceedings of the First International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems (SIMUTools), February 2008.

[3] I. Scholtes, J. Botev, M. Esch, H. Schloss, and P. Sturm, “Minimizing load delays
in distributed virtual environments using epidemic hoarding,” in Proceedings of
the 4th International Conference on Collaborative Computing (CollaborateCom),
November 2008.

[4] I. Scholtes, J. Botev, M. Esch, A. Höhfeld, and H. Schloss, “Awareness-driven phase
transitions in very large scale distributed systems,” in Proceedings of the Second
IEEE International Conferences on Self-Adaptive and Self-Organizing Systems
(SaSo). IEEE, 2008.

[5] I. Scholtes, J. Botev, M. Esch, and P. Sturm, “Epidemic self-synchronization in
complex networks,” in Proceedings of the 1st International Conference on Complex
Sciences: Theory and Applications, 2009.

[6] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregationin large
overlay networks,” in Proceedings of The 24th International Conference
on Distributed ComputingSystems (ICDCS 2004). Tokyo, Japan: IEEE
Computer Society, 2004, pp. 102–109. [Online]. Available: citeseer.ist.psu.edu/
jelasity04epidemicstyle.html

[7] H. Liang, I. Tay, M. F. Neo, W. T. Ooi, and M. Motani, “Avatar Mobility
in Networked Virtual Environments: Measurements, Analysis, and Implications”
arXiv:0807:2328v1, 2008.

[8] D. Görgen, H. Frey, and C. Hiedels, “Jane-the java ad hoc network development
environment,” in ANSS ’07: Proceedings of the 40th Annual Simulation Symposium.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 163–176.

[9] S.-H. Lo, J.-H. Ding, S.-J. Hung, J.-W. Tang, W.-L. Tsai, and Y.-C. Chung, “Semu:
A framework of simulation environment for wireless sensor networks with co-
simulation model,” in Advances in Grid and Pervasive Computing. Springer
Berlin / Heidelberg, 2007, pp. 672–677.

[10] C. Holmes, J. Wolff, D. Challou, and P. Huang, “Generic Visualization System: The
Link Between Digital Simulations and a Virtual Environment,” in Virtual Concepts
2005, Biarritz, Frannce, 2005.


