
Distributed Scene Graph to Enable Thousands

of Interacting Users in a Virtual Environment

Dan Lake, Mic Bowman, Huaiyu Liu

dan.lake@intel.com, mic.bowman@intel.com, huaiyu.liu@intel.com

Intel Labs, Intel Corporation

2111 NE 25th Ave

Hillsboro, OR, U.S.A.

Abstract—Virtual environments are currently limited to no

more than a hundred interacting users by the simulator-centric

server architectures used for many of these applications. There

are some potential new usages such as virtual concerts and

sporting events involving hundreds or thousands of users and

we seek to enable these exciting new applications. We propose

a distributed scene graph (DSG) architecture which enables

massive scaling of scene complexity and participants with the

addition of hardware. A prototype implementation of the DSG

components to manage client communications demonstrates an

order of magnitude increase in the number of concurrent

users. We present the design of this component within the DSG

architecture, prototype implementation based on an open

source virtual environment server and our experimental setup,

workloads and results.

virtual environment, virtual world, multiplayer, scaling,

client, server, game, distributed, scene, architecture,

opensimulator

I. INTRODUCTION

General purpose virtual worlds and multiplayer online
games, collectively referred to as virtual environments
(VEs), have gained tremendous popularity. Some of the
largest systems claim millions of registrations and tens of
thousands of simultaneous online users. They allow people
to represent themselves in the virtual environment as an
avatar and through the avatar they may interact with other
people and the environment. VEs are ever more able to
immerse users using rich 3D graphics, detailed models of
objects and realistic interactions between users and between
users and their environment.

As the richness and complexity of a VE increases, the
computation required to support the experience also
increases [1]. Online games such as World of Warcraft™
feature large virtual spaces but the environment remains
largely static and interactions between users and objects are
pre-defined by the game designers. Many optimizations can
be made in such a case and the computational load per user is
relatively low. As many as a hundred users can participate
and interact simultaneously. General purpose virtual worlds
such as Second Life® allow users to create their own
environments, objects and behaviors in real time with fewer
constraints on what can be built or how avatars can interact
with their environment. The computational load is higher as

models, graphical textures, and object behaviors cannot
generally be pre-computed by clients or the server prior to
run-time. This class of general purpose virtual world is
limited to well below 100 interacting users.

Interactions between the users and their environment are
of critical importance and the essence of any fun game or
interesting virtual world. As the complexity of the scene or
the number of participating users increases, the
communications and computation load on a per user basis
grows with it. Additionally, interactions between users and
the environment cause an exponential increase in
interdependencies between inputs from network clients and
server-side computation engines. Figure 1 shows the growth
of outgoing bandwidth measured from an OpenSimulator
[12] server with an increasing number of moving avatars.

Figure 1.

The bulk of the computation in most online games and
virtual worlds is done on centralized servers owned by the
company providing the service. The servers receive user
input, schedule and execute scripted behaviors of the
environment, drive the simulation of physics or other engines
and generate updates to clients. In many implementations,
most of the simulation and communication processes are
executing on a single piece of hardware. We refer to this as a
simulator-centric architecture [2].

At the heart of the VE server is the software which drives
the simulation. We refer to the components that apply

operations to objects and the scene as the actors on the scene.
These functions include:

 storing the objects in a portion of the scene

 handling incoming communications from users

 simulate physics of motion and gravity on objects

 run scripted behaviors of active objects

 save scene state to provide persistence

 generate update outputs to all connected clients

We found that when any one of these functions becomes
overloaded on the scene server, the user experience was
diminished regardless of remaining capacity for other types
of work. We therefore theorized that it is the actors on the
scene and not the scene storage and management itself which
are the primary barriers to scalability. Regardless of the
capacity of the central server, there is some quantity of
networking load, scripts, or simulation elements which will
fully load any system. At that point, the quality of the user
experience will be diminished. The simulator-centric
architecture does not scale with the addition of hardware.

There are two common approaches to dividing a VE
workload across multiple servers. Both involve dividing
users into different virtual spaces with each space executing
on different pieces of hardware. They are known as sharding
and spatial partitioning.

Sharding is when many copies of the same virtual space
are created on different servers and users are segregated into
different copies with very limited interactions. MMOGs such
as World of Warcraft have millions of users, but load is
managed by creating hundreds of copies (called shards) of
the entire game world. In a VE system implementing shards,
load balancing and quality of experience is managed by
limiting the number of characters which can be created in
any single shard and restricting the number of players that
may connect to a shard at one time through login wait
queues.

Spatial partitioning is when the virtual space is divided
across multiple servers with each server handling only the
load of the smaller space. The Second Life virtual world uses
spatial partitioning. Each server is assigned a square of land
256 meters on a side and the server, known as a simulator or
just sim, is responsible for everything that takes place in that
area. There is little communication between servers handling
different areas other than the handoff of users and objects as
they move around in virtual space.

We have proposed a new architecture which we call the
Distributed Scene Graph (DSG) [2]. The DSG is a spatially
partitioned scene graph which eliminates the simulator-
centric execution loop. The simulation work is moved from a
central server to actors around the scene graph, allowing a
general purpose virtual environment to scale with the
addition of hardware. In this paper, we present our work of
decoupling client management from the central simulator.
This is a first step and proof point in implementing the DSG.
With the introduction of the client manager, we are able to
support 1000 concurrent users, a 10X increase over state-of-
the-art.

The primary goal of the distributed scene graph
architecture is to allow the VE server workload to scale up
with additional hardware while maintaining a high quality
user experience. A scene that once had integrated
networking, physics and script engines may now have
multiple client managers or script engines as needed, running
on separate hardware.

The remainder of the paper is organized as follows. In
Section II, we present an overview of the distributed scene
graph architecture. We describe the role and operation of the
client manager component as it works with the DSG in
Section III and implementation details of our prototype in
Section IV. Our experimental results based on the prototype
are reported in Section V and we conclude with our future
work in Section VI.

II. DISTRIBUTED SCENE GRAPH

In this section, we provide a brief introduction to the
distributed scene graph (DSG) as a background for the client
manager component presented in the following sections. A
full discussion of its capabilities and operation is presented
in a separate paper [2].

In the DSG architecture, the scene is no longer a single
centralized and monolithic process which drives the
simulation of the space and manages data. Instead, the scene
is an information hub which connects various simulation
components (called actors) that interact with and through the
scene. It exposes the available operations on objects through
the scene interface, acts in response to actor requests (add,
remove, update) and distributes object updates and world
events (such as collision events, sensor events) to other
interested actors. By separating the scene from the actors, the
scene is free to focus on data management, state
synchronization, event distribution, and provide persistence
of state.

Figure 2.

As depicted in figure 2, the scene can be hosted on
multiple servers, each managing a portion of the data for
load balancing purposes. We call each portion of the scene a
region. Regions can be of varying sizes. The regions in
figure 2 are shown as Scene-0 through Scene-N, collectively
called the distributed scene graph. Each scene region
supports the actors by providing an interface (shown as a
horizontal grey line) through which they can subscribe to
interesting objects or events and publish changes to the
different regions of the scene. A key challenge of our
research is to develop a robust interface to the scene with

efficient and scalable message exchange protocols to deliver
updates between the scene and the actors with minimal
communication cost. Research into pub/sub models for
message distribution [3][10] and mixed synchronization for
heterogeneous actors [4] have provided a basis for
addressing this. The DSG aims to build on these
technologies to scale virtual worlds orders of magnitude
beyond their current capacity.

As an example of actors communicating with the scene
and with each other, consider the case of a voice-activated
door. The door has a script controlling its behavior which
listens for a correct passphrase within the vicinity around the
door. To enable this, the script engine subscribes to chat
events within the region where the door is located. When a
nearby avatar speaks, the chat activity is received by the
client manager and posted into the scene as a chat event. The
scene services the subscriptions for chat and forwards the
message on to the script engine which then provides the
message to the appropriate script for verification. If the script
determines that the door should open, then the script engine
posts an update of the door to the scene. That update is then
broadcast to the actors which have subscribed to the state of
the door, including the client manager. The updated state of
the door is finally communicated back to the client who
spoke the passphrase along with other nearby users who are
within sight of the door.

Unlike traditional spatial partitioning, the scene regions
in the DSG architecture would be split according to the
number of messages that the region must process and pass in
support of the actors communicating with and through each
section. The size and shape of each region of the scene is
selected so that the number of messages is below the
processing threshold and networking capacity of the server
hosting the region. The scene regions do not directly
participate in any of the simulation work. There are actors
computing physics, running scripted actions, processing user
inputs over the network, and any other process that may have
an interest in participating in the scene. These actors may be
executing on the same hardware as one of the scene regions
or on separate hardware. The distribution of actors would
depend on available hardware and the load balancing policy.

DSG allows for multiple actors of the same type to work
on a single region of the scene. The opposite is also
supported where one script engine, for example, can operate
across multiple regions supporting the scripted behaviors of a
much larger space. Actors can now be partitioned
independently of the scene space and of other actors,
allowing each simulation component to run on hardware best
configured for the type of simulation being performed and in
a real-world proximity that provides the best balance
between cost and user experience.

III. PROOF POINT – CLIENT MANAGER

The client manager is an actor on the scene graph which
allows users to interact with the scene. It manages the
connection to clients, forwards client inputs to the central
scene through the scene interface and broadcasts scene
updates and events to connected clients within their area of
interest. In addition, it could potentially perform update

filtering, detail reduction or prioritization based on distance
or other factors. We are experimenting with solutions such as
surface elements [6] and image based rendering [7] to apply
highly compressed scene representations for distant regions
that may only occupy a small number of pixels on a client’s
screen. The client manager can also use interest management
[5][8] and visibility calculation [9] algorithms when
subscribing to scene objects and events to reduce the
message load it must process and communicate to clients.
This offloads a considerable amount of computation from the
centralized scene server to the client manager.

A. Design

As the first step in implementing the DSG, we have
specified the sections of the scene interface which are needed
to support client managers and script engines to act on the
scene. These are the scene interface calls that are used by a
client manager. Subscription calls will cause a message or
callback from the scene to the client manager when one of
the subscribed events occurs.

 Subscribe to new or removed avatar events

 Subscribe to updated avatar (position, properties)

 Subscribe to new, updated, or removed object events

 Subscribe to spatial events (chat, sensors)

 Subscribe to directed chat events

 Add/Remove avatar

 Update avatar (change position, velocity)

 Add/Remove objects

 Update object (size, shape, properties)

 Get region info (terrain, environment, properties)

When a client manager first comes online and connects to

one or more scene regions, it will subscribe to the events
which are interesting to clients. These are shown in the list
above. From that point, the scene region will send the
subscribed updates to the client manager so that both will
have a synchronized view of the scene from a client's
perspective.

When a new user wants to view or participate in the
scene, they will use an appropriately configured viewer or
browser application. The viewer software contacts a
centralized login and authentication service and specifies the
location in virtual space where the avatar should be
positioned. The login service then provides connection
information for an appropriate client manager server and the
viewer then connects to the client manager. This is similar to
how a DNS request returns server address information to a
web browser.

The client manager listens for connection requests from
new clients wanting to participate in a scene and
authenticates those clients by communicating with central
account services. It then creates a representation for new
users in the scene by publishing a request to add an avatar at
the appropriate location in the distributed scene graph. This
is done through the scene interface. The client manager
receives network inputs from connected clients including
movement commands, social and chat activity, economy
transactions, maps, models, textures, and other operations

associated with the VE, its objects and other participants.
Some of these user actions modify the scene. Examples are
avatar movement or building and editing objects and the
environment. In these situations, the changes are published to
the central scene through the scene interface. There are also
many types of client input which do not change the state of
the scene or its objects. Requests which only "read" data
such as fetching a map, an object model, media, or textures
can be handled locally by the client manager or by another
service distinct from the scene interface. Other inputs such as
chat messages or touching and interacting with scene objects
may not alter the visible scene but can still cause events
which other users or actors may be interested in.

When the client manager gets a new connection from a
client, it posts a new avatar to the scene region where the
avatar is positioned. An initial view of the entire area of
interest for the new avatar is sent from the client manager to
the client's viewer and displayed for the user. The user is
then able to move about and interact with the environment,
having a current view of the scene from their position.

User inputs from clients are received by the client
manager and posted to the appropriate scene region where
the avatar is located. Updates from the scene are broadcast to
all actors which have subscribed to avatar attributes such as
position. In this case, client managers each get the update
and distribute to the connected clients. The client managers
subscribe to avatar positions within the area of coverage,
visible object updates, etc on the scene graph interface.
Client managers are responsible for establishing connections
to new clients as they join the scene. They work with central
grid services to get avatar appearances, capabilities, maps,
permissions, social data, etc.

B. Scaling Number of Concurrent Users

Figure 3 shows how multiple client managers may
connect to the Scene API on a region and each manager then
hosts several client connections. This additional layer can at
first be thought of as a proxy for clients but the client
managers are capable of offloading more than just the simple
network processing from the scene server. Almost any type
of request from a client that does not modify the scene can be
handled directly by the client manager.

Figure 3.

Whatever quantity of messages a scene is able to process
is now multiplied by the number of client managers being
deployed. With five client managers and 500 clients, the
central scene only needs to transmit each update or event

message to five endpoints instead of 500, freeing it to
continue handling transactions from other actors and manage
a much larger region than current VE simulators.

When one client manager gets overloaded, it can shed
load to other client managers or an additional client manager
can be brought online.

IV. CLIENT MANAGER PROTOTYPE

In order to measure the scalability of the distributed
scene graph architecture, we built a proof of concept
implementation using software from the OpenSimulator
project [12]. We selected OpenSimulator because it is a
mature VE server implementation with similar capabilities to
the Second Life platform. It is open source so we can modify
the software to meet our requirements and has a flexible
framework for adding custom modules to regions of space. It
is compatible with several existing viewers, eliminating the
need to implement the client-side software. In its unmodified
form, OpenSimulator implements spatial partitioning to
distribute load. Each region of virtual space is fixed in size
and is typically run on a server by itself or collocated with a
few adjacent regions if server capacity allows. Different
organizations or individuals can operate their own region
simulators and connect them together as part of a larger
virtual world known as a grid.

For our proof of concept, we designed two region
modules for OpenSimulator that allow it to be run either as a
region of the scene or as an actor providing simulation
functionality to the scene. Figure 4 shows the connection
between the scene server and a client manager actor through
the Scene API connector. This allows identical software to
run as different components in the DSG by changing
configuration options. Instead of the scene and all simulation
functionality running in a single executable, we can specify
that an instance of OpenSimulator should only act as a script
engine or client manager actor and which scene regions it
should provide the functionality to.

Figure 4.

Figure 5.

We have not yet implemented the interface to support a
decoupled physics engine. Figure 5 shows the prototype

architecture with the physics engine (PE) still integrated with
the scene service and support for multiple distributed script
engines (SE1...SEN) and client managers (CM1...CMN).

A. Scene module

We wrapped an interface around each region through
which actors can publish and subscribe to region data,
objects, and avatars in the region. We did this by creating a
region module on the server which accepts connections from
actors (client manager, etc) and implements the scene
interface. The module receives requests over the network and
makes the calls into the local scene. Changes in the scene or
other event notifications are pushed by the region module to
the interested actors as needed. A simulator running this
module thus becomes one of the regions in the distributed
scene graph. It is entirely responsible for storing the
authoritative copy of all objects and avatar presences in that
area of virtual space, receiving updates from actors and
publishing updates to subscribed actors. Other functionality
other than storing and communicating object data has been
disabled in this configuration.

B. Client Manager module

Another region module allows OpenSimulator to operate
as an actor on the scene such as a client manager. In this
case, all authority over the objects and avatars has been
relinquished to the central scene. The client manager
receives data as usual from connected clients but instead of
processing that data locally, it pushes the inputs to the scene
module on the central region through the Scene API. Any
updates which come back from the central scene are
broadcast to interested users.

C. Scene and Client Manager Placement

The DSG architecture is designed to run regions of the
scene across multiple servers and different geographies to
provide the best user experience and to scale with the
addition of hardware. Different client managers can be
placed in different geographic locations. Clients can connect
to the closest client manger server in terms of latency and
bandwidth. Communication between client managers and the
central scene server will typically be over a much longer
distance and more network hops. These connections can be
within a high speed low latency backbone, allowing high
speed, reliable communication between the scene and client
managers.

V. EXPERIMENTAL RESULTS

To test our implementation of the DSG with client
managers, we wanted to scale up the number of connected
clients and also the number of interacting clients. For our
interacting client experiments, we generate a realistic client
load using TestClient application from the
LibOpenMetaverse project [11]. We implemented a new
client action which we call swarm bot. Each connected bot,
when given the command to swarm, picks a random
waypoint within a specified area of the scene. The bot then
turns and walks toward that waypoint. When it reaches its
destination or has determined that it is not making progress

(the path may be blocked), it picks another waypoint and
repeats the process until told to stop at the end of the
experiment.

Our test configuration consists of a server running the
central scene region (OpenSimulator configured in scene
mode), five servers running client managers (OpenSimulator
configured in client manager mode), and five servers running
TestClient to generate the load. Each load server can host up
to 200 TestClient bots, each with a network connection to a
client manager.

To evaluate improvements, we use the simulation frame
rate as reported by OpenSimulator running the central scene
with integrated physics. When running with no load, the
baseline frame rate is above 50 fps, indicating that the inputs
from all actors has been processed, the physics simulation
step has been completed, and updates have been sent out to
connected clients or client managers.

We ran two sets of experiments using the TestClient with
increasing number of swarm bots. In the first experiment, we
use an unmodified OpenSimulator server to get a baseline
measurement of how the frame rate changes as the number
of interacting users increases. In the second experiment we
use our test bed to distribute the client management across
multiple servers. We connect an increasing number of swarm
clients evenly across multiple client managers.

In the case of the monolithic simulator, Figure 6 shows
how the frame rate decreases as the number of connected
clients increases. Once 400 clients have connected, the frame
rate has begun to decrease and lag appears in the physics and
network processing. With even more swarm bots, the frame
rate quickly drops to where the scene is unusable. Figure 7
shows the percentage of frame time allocated to client
processing continuing to increase with the number of clients.
This is expected, but it also indicates that once the server
becomes fully utilized at around 400 clients, both client and
physics processing flatten out and the frame rate just
continues to decrease.

It is this situation that the DSG is designed to eliminate
by offloading and distributing the client communication
processing to multiple servers, giving more processing
capacity to physics and scene management. The scene server
only needs to communicate with a small number of client
managers rather than the hundreds of clients directly.

Figure 6.

Figure 7.

In the case where we have five client managers and one
central scene server, we can connect up to 750 swarm bots to
the distributed client managers before the frame rate of the
physics simulation drops below 40 fps. When we connected
over 1000 swarming, interacting bots to the client managers,
the frame rate of the physics engine dropped to below 10 fps.
The OpenDynamicsEngine (ODE) physics engine used in
OpenSimulator is single threaded and almost all cycles on
the scene server are spent computing physics, limiting the
frame rate of the scene to that of the physics engine. The
DSG architecture with distributed client management has
allowed us to almost entirely offload the communication
processing from the central scene. These experiments
confirm our ideas that offloading the simulation actors of
client management, physics, script execution from the central
scene will allow each actor to scale with additional hardware.

Using a configuration with client managers in multiple
geographies including California, Oregon, and New York,
USA, we have publicly demonstrated over 1000 swarm bots
with more than a dozen human participants.

The limitations we have encountered with avatar scaling
during these experiments have been in getting enough
hardware to generate the load of over 1000 clients and the
limited physics simulation capabilities of a single thread on
the scene server.

VI. CONCLUSION AND FUTURE WORK

We have described how the distributed scene graph with
discrete actors for client management, script processing and
physics simulation can convert the scene server from a
monolithic VE simulator to a high speed communication bus.
A publish/subscribe model from actors to the scene allow for
several technologies such as spatial filtering and update
detail reduction to further increase the scalability potential of
the architecture.

With the client management actor in place, we have
nearly doubled the number of connected clients with a "full
speed" simulation frame rate by offloading the client
processing from the scene. We have also demonstrated

publicly over 1000 connected avatars with an interactive
frame rate. These results validate our DSG proposal that
offloading simulation processing from the monolithic scene
server and communicating with and through the scene via a
Scene API allows the entire VE scene to scale with the
addition of hardware.

In other areas of our DSG work, we have demonstrated a
distributed script engine which enables multiple servers to
process scripts for objects within a single region of virtual
space. Our research continues into creating an actor for
distributed and multi-threaded physics simulations.

Future experiments will include network emulation and
more testing of the distributed client managers on the open
Internet. We expect to encounter additional challenges when
the latency and jitter of real networks are introduced to the
synchronization, publish/subscribe functions of the
distributed scene graph.

REFERENCES

[1] Gupta, N., Demers, A., Gehrke, J., Unterbrunner, P., and White, W.
2009. Scalability for Virtual Worlds. In Proceedings of the 2009
IEEE international Conference on Data Engineering (ICDE).

[2] H. Liu, M. Bowman, R. Adams, J. Hurliman, and D. Lake. Scaling

virtual worlds: simulation requirements and challenges. To appear
in Proc. of Winter Simulation Conference, Decemeber 2010.

[3] Ostrowski, K., Birman, K., and Dolev, D. 2007. Extensible

Architecture for High-Performance, Scalable,Reliable Publish-

Subscribe Eventing and Notification. International Journal of Web
Services Research 4 (4), 18-58.

[4] Perumalla, K. 2006. Parallel and Distributed Simulation:

Traditional Techniques and Recent Advances. In Proceedings of
the 2006 Winter Simulation Conference.

[5] Graham Morgan , Fengyun Lu , Kier Storey, Interest management

middleware for networked games. In Proceedings of the 2005
symposium on Interactive 3D graphics and games, April 03-06, 2005,
Washington, District of Columbia

[6] Pfister, H., Zwicker, M., van Baar, J., and Gross, M. 2000. Surfels:

surface elements as rendering primitives. In Proceedings of the
27th Annual Conference on Computer Graphics and interactive
Techniques, SIGGRAPH 2000.

[7] Shum, H.-Y. and Kang, S. B. 2000. Review of image-based

rendering techniques. In Proceedings of SPIE Int’l Conf. on Visual
Communications and Image Processing, Perth, Australia, June 2000,
pp. 2-13.

[8] Taylor, S. J., Saville, J., and Sudra, R. 1999. Developing interest

management techniques in distributed interactive simulation

using Java. In Proceedings of the 1999 Winter Simulation
Conference.

[9] Kumar, S., Chhugani, J., Kim, C., Kim, D., Nguyen, A., Dubey, P.,
Bienia, C., and Kim, Y. 2008. Second Life and the New Generation
of Virtual Worlds. Computer 41 (9), 46-53.

[10] Shun-Yun Hu, Chuan Wu, Eliya Buyukkaya, Chien-Hao Chien, Tzu-
Hao Lin, Maha Abdallah, Jehn-Ruey Jiang, and Kuan-Ta Chen, A

Spatial Publish Subscribe Overlay for Massively Multiuser

Virtual Environments. In Proc. 2010 International Conference on
Electronics and Information Engineering (ICEIE 2010), Aug. 2010

[11] OpenMetaverse project website: http://www.openmetaverse.org/

[12] OpenSimulator project website: http://opensimulator.org

