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Abstract—Virtual environments are currently limited to no 

more than a hundred interacting users by the simulator-centric 

server architectures used for many of these applications. There 

are some potential new usages such as virtual concerts and 

sporting events involving hundreds or thousands of users and 

we seek to enable these exciting new applications. We propose 

a distributed scene graph (DSG) architecture which enables 

massive scaling of scene complexity and participants with the 

addition of hardware. A prototype implementation of the DSG 

components to manage client communications demonstrates an 

order of magnitude increase in the number of concurrent 

users. We present the design of this component within the DSG 

architecture, prototype implementation based on an open 

source virtual environment server and our experimental setup, 

workloads and results. 
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I.  INTRODUCTION 

General purpose virtual worlds and multiplayer online 
games, collectively referred to as virtual environments 
(VEs), have gained tremendous popularity. Some of the 
largest systems claim millions of registrations and tens of 
thousands of simultaneous online users. They allow people 
to represent themselves in the virtual environment as an 
avatar and through the avatar they may interact with other 
people and the environment. VEs are ever more able to 
immerse users using rich 3D graphics, detailed models of 
objects and realistic interactions between users and between 
users and their environment. 

As the richness and complexity of a VE increases, the 
computation required to support the experience also 
increases [1]. Online games such as World of Warcraft™ 
feature large virtual spaces but the environment remains 
largely static and interactions between users and objects are 
pre-defined by the game designers. Many optimizations can 
be made in such a case and the computational load per user is 
relatively low. As many as a hundred users can participate 
and interact simultaneously. General purpose virtual worlds 
such as Second Life® allow users to create their own 
environments, objects and behaviors in real time with fewer 
constraints on what can be built or how avatars can interact 
with their environment. The computational load is higher as 

models, graphical textures, and object behaviors cannot 
generally be pre-computed by clients or the server prior to 
run-time. This class of general purpose virtual world is 
limited to well below 100 interacting users. 

Interactions between the users and their environment are 
of critical importance and the essence of any fun game or 
interesting virtual world. As the complexity of the scene or 
the number of participating users increases, the 
communications and computation load on a per user basis 
grows with it. Additionally, interactions between users and 
the environment cause an exponential increase in 
interdependencies between inputs from network clients and 
server-side computation engines.  Figure 1 shows the growth 
of outgoing bandwidth measured from an OpenSimulator 
[12] server with an increasing number of moving avatars. 

 

 
Figure 1.   

The bulk of the computation in most online games and 
virtual worlds is done on centralized servers owned by the 
company providing the service. The servers receive user 
input, schedule and execute scripted behaviors of the 
environment, drive the simulation of physics or other engines 
and generate updates to clients. In many  implementations, 
most of the simulation and communication processes are 
executing on a single piece of hardware. We refer to this as a 
simulator-centric architecture [2]. 

At the heart of the VE server is the software which drives 
the simulation. We refer to the components that apply 



operations to objects and the scene as the actors on the scene. 
These functions include: 

 storing the objects in a portion of the scene 

 handling incoming communications from users 

 simulate physics of motion and gravity on objects 

 run scripted behaviors of active objects 

 save scene state to provide persistence 

 generate update outputs to all connected clients 
 

We found that when any one of these functions becomes 
overloaded on the scene server, the user experience was 
diminished regardless of remaining capacity for other types 
of work. We therefore theorized that it is the actors on the 
scene and not the scene storage and management itself which 
are the primary barriers to scalability. Regardless of the 
capacity of the central server, there is some quantity of 
networking load, scripts, or simulation elements which will 
fully load any system. At that point, the quality of the user 
experience will be diminished. The simulator-centric 
architecture does not scale with the addition of hardware.  

There are two common approaches to dividing a VE 
workload across multiple servers. Both involve dividing 
users into different virtual spaces with each space executing 
on different pieces of hardware. They are known as sharding 
and spatial partitioning. 

Sharding is when many copies of the same virtual space 
are created on different servers and users are segregated into 
different copies with very limited interactions. MMOGs such 
as World of Warcraft have millions of users, but load is 
managed by creating hundreds of copies (called shards) of 
the entire game world. In a VE system implementing shards, 
load balancing and quality of experience is managed by 
limiting the number of characters which can be created in 
any single shard and restricting the number of players that 
may connect to a shard at one time through login wait 
queues. 

Spatial partitioning is when the virtual space is divided 
across multiple servers with each server handling only the 
load of the smaller space. The Second Life virtual world uses 
spatial partitioning. Each server is assigned a square of land 
256 meters on a side and the server, known as a simulator or 
just sim, is responsible for everything that takes place in that 
area. There is little communication between servers handling 
different areas other than the handoff of users and objects as 
they move around in virtual space. 

We have proposed a new architecture which we call the 
Distributed Scene Graph (DSG) [2]. The DSG is a spatially 
partitioned scene graph which eliminates the simulator-
centric execution loop. The simulation work is moved from a 
central server to actors around the scene graph, allowing a 
general purpose virtual environment to scale with the 
addition of hardware. In this paper, we present our work of 
decoupling client management from the central simulator. 
This is a first step and proof point in implementing the DSG. 
With the introduction of the client manager, we are able to 
support 1000 concurrent users, a 10X increase over state-of-
the-art. 

The primary goal of the distributed scene graph 
architecture is to allow the VE server workload to scale up 
with additional hardware while maintaining a high quality 
user experience. A scene that once had integrated 
networking, physics and script engines may now have 
multiple client managers or script engines as needed, running 
on separate hardware.  

The remainder of the paper is organized as follows. In 
Section II, we present an overview of the distributed scene 
graph architecture. We describe the role and operation of the 
client manager component as it works with the DSG in 
Section III and implementation details of our prototype in 
Section IV. Our experimental results based on the prototype 
are reported in Section V and we conclude with our future 
work in Section VI. 

II. DISTRIBUTED SCENE GRAPH 

In this section, we provide a brief introduction to the 
distributed scene graph (DSG) as a background for the client 
manager component presented in the following sections. A 
full discussion of its capabilities and operation is presented 
in a separate paper [2]. 

In the DSG architecture, the scene is no longer a single 
centralized and monolithic process which drives the 
simulation of the space and manages data. Instead, the scene 
is an information hub which connects various simulation 
components (called actors) that interact with and through the 
scene. It exposes the available operations on objects through 
the scene interface, acts in response to actor requests (add, 
remove, update) and distributes object updates and world 
events (such as collision events, sensor events) to other 
interested actors. By separating the scene from the actors, the 
scene is free to focus on data management, state 
synchronization, event distribution, and provide persistence 
of state. 

 

 
Figure 2.   

As depicted in figure 2, the scene can be hosted on 
multiple servers, each managing a portion of the data for 
load balancing purposes. We call each portion of the scene a 
region. Regions can be of varying sizes. The regions in 
figure 2 are shown as Scene-0 through Scene-N, collectively 
called the distributed scene graph. Each scene region 
supports the actors by providing an interface (shown as a 
horizontal grey line) through which they can subscribe to 
interesting objects or events and publish changes to the 
different regions of the scene. A key challenge of our 
research is to develop a robust interface to the scene with 



efficient and scalable message exchange protocols to deliver 
updates between the scene and the actors with minimal 
communication cost. Research into pub/sub models for 
message distribution [3][10] and mixed synchronization for 
heterogeneous actors [4] have provided a basis for 
addressing this. The DSG aims to build on these 
technologies to scale virtual worlds orders of magnitude 
beyond their current capacity. 

As an example of actors communicating with the scene 
and with each other, consider the case of a voice-activated 
door. The door has a script controlling its behavior which 
listens for a correct passphrase within the vicinity around the 
door. To enable this, the script engine subscribes to chat 
events within the region where the door is located. When a 
nearby avatar speaks, the chat activity is received by the 
client manager and posted into the scene as a chat event. The 
scene services the subscriptions for chat and forwards the 
message on to the script engine which then provides the 
message to the appropriate script for verification. If the script 
determines that the door should open, then the script engine 
posts an update of the door to the scene. That update is then 
broadcast to the actors which have subscribed to the state of 
the door, including the client manager. The updated state of 
the door is finally communicated back to the client who 
spoke the passphrase along with other nearby users who are 
within sight of the door.  

Unlike traditional spatial partitioning, the scene regions 
in the DSG architecture would be split according to the 
number of messages that the region must process and pass in 
support of the actors communicating with and through each 
section. The size and shape of each region of the scene is 
selected so that the number of messages is below the 
processing threshold and networking capacity of the server 
hosting the region. The scene regions do not directly 
participate in any of the simulation work. There are actors 
computing physics, running scripted actions, processing user 
inputs over the network, and any other process that may have 
an interest in participating in the scene. These actors may be 
executing on the same hardware as one of the scene regions 
or on separate hardware. The distribution of actors would 
depend on available hardware and the load balancing policy.  

DSG allows for multiple actors of the same type to work 
on a single region of the scene. The opposite is also 
supported where one script engine, for example, can operate 
across multiple regions supporting the scripted behaviors of a 
much larger space. Actors can now be partitioned 
independently of the scene space and of other actors, 
allowing each simulation component to run on hardware best 
configured for the type of simulation being performed and in 
a real-world proximity that provides the best balance 
between cost and user experience. 

III. PROOF POINT – CLIENT MANAGER 

The client manager is an actor on the scene graph which 
allows users to interact with the scene. It manages the 
connection to clients, forwards client inputs to the central 
scene through the scene interface and broadcasts scene 
updates and events to connected clients within their area of 
interest. In addition, it could potentially perform update 

filtering, detail reduction or prioritization based on distance 
or other factors. We are experimenting with solutions such as 
surface elements [6] and image based rendering [7] to apply 
highly compressed scene representations for distant regions 
that may only occupy a small number of pixels on a client’s 
screen. The client manager can also use interest management 
[5][8] and visibility calculation [9] algorithms when 
subscribing to scene objects and events to reduce the 
message load it must process and communicate to clients. 
This offloads a considerable amount of computation from the 
centralized scene server to the client manager. 

A. Design 

As the first step in implementing the DSG, we have 
specified the sections of the scene interface which are needed 
to support client managers and script engines to act on the 
scene. These are the scene interface calls that are used by a 
client manager. Subscription calls will cause a message or 
callback from the scene to the client manager when one of 
the subscribed events occurs. 

 Subscribe to new or removed avatar events 

 Subscribe to updated avatar (position, properties) 

 Subscribe to new, updated, or removed object events 

 Subscribe to spatial events (chat, sensors) 

 Subscribe to directed chat events 

 Add/Remove avatar 

 Update avatar (change position, velocity) 

 Add/Remove objects 

 Update object (size, shape, properties) 

 Get region info (terrain, environment, properties) 
   
When a client manager first comes online and connects to 

one or more scene regions, it will subscribe to the events 
which are interesting to clients. These are shown in the list 
above. From that point, the scene region will send the 
subscribed updates to the client manager so that both will 
have a synchronized view of the scene from a client's 
perspective.  

When a new user wants to view or participate in the 
scene,  they will use an appropriately configured viewer or 
browser application. The viewer software contacts a 
centralized login and authentication service and specifies the 
location in virtual space where the avatar should be 
positioned. The login service then provides connection 
information for an appropriate client manager server and the 
viewer then connects to the client manager. This is similar to 
how a DNS request returns server address information to a 
web browser. 

The client manager listens for connection requests from 
new clients wanting to participate in a scene and 
authenticates those clients by communicating with central 
account services. It then creates a representation for new 
users in the scene by publishing a request to add an avatar at 
the appropriate location in the distributed scene graph. This 
is done through the scene interface. The client manager 
receives network inputs from connected clients including 
movement commands, social and chat activity, economy 
transactions, maps, models, textures, and other operations 



associated with the VE, its objects and other participants. 
Some of these user actions modify the scene. Examples are 
avatar movement or building and editing objects and the 
environment. In these situations, the changes are published to 
the central scene through the scene interface. There are also 
many types of client input which do not change the state of 
the scene or its objects. Requests which only "read" data 
such as fetching a map, an object model, media, or textures 
can be handled locally by the client manager or by another 
service distinct from the scene interface. Other inputs such as 
chat messages or touching and interacting with scene objects 
may not alter the visible scene but can still cause events 
which other users or actors may be interested in. 

When the client manager gets a new connection from a 
client, it posts a new avatar to the scene region where the 
avatar is positioned. An initial view of the entire area of 
interest for the new avatar is sent from the client manager to 
the client's viewer and displayed for the user. The user is 
then able to move about and interact with the environment, 
having a current view of the scene from their position. 

User inputs from clients are received by the client 
manager and posted to the appropriate scene region where 
the avatar is located. Updates from the scene are broadcast to 
all actors which have subscribed to avatar attributes such as 
position. In this case, client managers each get the update 
and distribute to the connected clients. The client managers 
subscribe to avatar positions within the area of coverage, 
visible object updates, etc on the scene graph interface. 
Client managers are responsible for establishing connections 
to new clients as they join the scene. They work with central 
grid services to get avatar appearances, capabilities, maps, 
permissions, social data, etc. 

B. Scaling Number of Concurrent Users 

Figure 3 shows how multiple client managers may 
connect to the Scene API on a region and each manager then 
hosts several client connections. This additional layer can at 
first be thought of as a proxy for clients but the client 
managers are capable of offloading more than just the simple 
network processing from the scene server. Almost any type 
of request from a client that does not modify the scene can be 
handled directly by the client manager.  

 
Figure 3.   

Whatever quantity of messages a scene is able to process 
is now multiplied by the number of client managers being 
deployed. With five client managers and 500 clients, the 
central scene only needs to transmit each update or event 

message to five endpoints instead of 500, freeing it to 
continue handling transactions from other actors and manage 
a much larger region than current VE simulators.  

When one client manager gets overloaded, it can shed 
load to other client managers or an additional client manager 
can be brought online.  

IV. CLIENT MANAGER PROTOTYPE 

In order to measure the scalability of the distributed 
scene graph architecture, we built a proof of concept 
implementation using software from the OpenSimulator 
project [12]. We selected OpenSimulator because it is a 
mature VE server implementation with similar capabilities to 
the Second Life platform. It is open source so we can modify 
the software to meet our requirements and has a flexible 
framework for adding custom modules to regions of space. It 
is compatible with several existing viewers, eliminating the 
need to implement the client-side software. In its unmodified 
form, OpenSimulator implements spatial partitioning to 
distribute load. Each region of virtual space is fixed in size 
and is typically run on a server by itself or collocated with a 
few adjacent regions if server capacity allows. Different 
organizations or individuals can operate their own region 
simulators and connect them together as part of a larger 
virtual world known as a grid. 

For our proof of concept, we designed two region 
modules for OpenSimulator that allow it to be run either as a 
region of the scene or as an actor providing simulation 
functionality to the scene. Figure 4 shows the connection 
between the scene server and a client manager actor through 
the Scene API connector. This allows  identical software to 
run as different components in the DSG by changing 
configuration options. Instead of the scene and all simulation 
functionality running in a single executable, we can specify 
that an instance of OpenSimulator should only act as a script 
engine or client manager actor and which scene regions it 
should provide the functionality to.  

 

 
Figure 4.   

 
Figure 5.   

We have not yet implemented the interface to support a 
decoupled physics engine. Figure 5 shows the prototype 



architecture with the physics engine (PE) still integrated with 
the scene service and support for multiple distributed script 
engines (SE1...SEN) and client managers (CM1...CMN). 

A. Scene module 

We wrapped an interface around each region through 
which actors can publish and subscribe to region data, 
objects, and avatars in the region.  We did this by creating a 
region module on the server which accepts connections from 
actors (client manager, etc) and implements the scene 
interface. The module receives requests over the network and 
makes the calls into the local scene. Changes in the scene or 
other event notifications are pushed by the region module to 
the interested actors as needed. A simulator running this 
module thus becomes one of the regions in the distributed 
scene graph. It is entirely responsible for storing the 
authoritative copy of all objects and avatar presences in that 
area of virtual space, receiving updates from actors and 
publishing updates to subscribed actors. Other functionality 
other than storing and communicating object data has been 
disabled in this configuration.  

B. Client Manager module 

Another region module allows OpenSimulator to operate 
as an actor on the scene such as a client manager. In this 
case, all authority over the objects and avatars has been 
relinquished to the central scene. The client manager 
receives data as usual from connected clients but instead of 
processing that data locally, it pushes the inputs to the scene 
module on the central region through the Scene API. Any 
updates which come back from the central scene are 
broadcast to interested users. 

C. Scene and Client Manager Placement 

The DSG architecture is designed to run regions of the 
scene across multiple servers and different geographies to 
provide the best user experience and to scale with the 
addition of hardware. Different client managers can be 
placed in different geographic locations. Clients can connect 
to the closest client manger server in terms of latency and 
bandwidth. Communication between client managers and the 
central scene server will typically be over a much longer 
distance and more network hops. These connections can be 
within a high speed low latency backbone, allowing high 
speed, reliable communication between the scene and client 
managers. 

V. EXPERIMENTAL RESULTS 

To test our implementation of the DSG with client 
managers, we wanted to scale up the number of connected 
clients and also the number of interacting clients. For our 
interacting client experiments, we generate a realistic client 
load using TestClient application from the 
LibOpenMetaverse project [11]. We implemented a new 
client action which we call swarm bot. Each connected bot, 
when given the command to swarm, picks a random 
waypoint within a specified area of the scene. The bot then 
turns and walks toward that waypoint. When it reaches its 
destination or has determined that it is not making progress 

(the path may be blocked), it picks another waypoint and 
repeats the process until told to stop at the end of the 
experiment.  

Our test configuration consists of a server running the 
central scene region (OpenSimulator configured in scene 
mode), five servers running client managers (OpenSimulator 
configured in client manager mode), and five servers running 
TestClient to generate the load. Each load server can host up 
to 200 TestClient bots, each with a network connection to a 
client manager. 

To evaluate improvements, we use the simulation frame 
rate as reported by OpenSimulator running the central scene 
with integrated physics. When running with no load, the 
baseline frame rate is above 50 fps, indicating that the inputs 
from all actors has been processed, the physics simulation 
step has been completed, and updates have been sent out to 
connected clients or client managers.  

We ran two sets of experiments using the TestClient with 
increasing number of swarm bots. In the first experiment, we 
use an unmodified OpenSimulator server to get a baseline 
measurement of how the frame rate changes as the number 
of interacting users increases. In the second experiment we 
use our test bed to distribute the client management across 
multiple servers. We connect an increasing number of swarm 
clients evenly across multiple client managers. 

In the case of the monolithic simulator, Figure 6 shows 
how the frame rate decreases as the number of connected 
clients increases. Once 400 clients have connected, the frame 
rate has begun to decrease and lag appears in the physics and 
network processing. With even more swarm bots, the frame 
rate quickly drops to where the scene is unusable. Figure 7 
shows the percentage of frame time allocated to client 
processing continuing to increase with the number of clients. 
This is expected, but it also indicates that once the server 
becomes fully utilized at around 400 clients, both client and 
physics processing flatten out and the frame rate just 
continues to decrease.  

It is this situation that the DSG is designed to eliminate 
by offloading and distributing the client communication 
processing to multiple servers, giving more processing 
capacity to physics and scene management. The scene server 
only needs to communicate with a small number of client 
managers rather than the hundreds of clients directly. 

 

 

Figure 6.   



 
Figure 7.   

In the case where we have five client managers and one 
central scene server, we can connect up to 750 swarm bots to 
the distributed client managers before the frame rate of the 
physics simulation drops below 40 fps. When we connected 
over 1000 swarming, interacting bots to the client managers, 
the frame rate of the physics engine dropped to below 10 fps. 
The OpenDynamicsEngine (ODE) physics engine used in 
OpenSimulator is single threaded and almost all cycles on 
the scene server are spent computing physics, limiting the 
frame rate of the scene to that of the physics engine. The 
DSG architecture with distributed client management has 
allowed us to almost entirely offload the communication 
processing from the central scene. These experiments 
confirm our ideas that offloading the simulation actors of 
client management, physics, script execution from the central 
scene will allow each actor to scale with additional hardware.  

Using a configuration with client managers in multiple 
geographies including California, Oregon, and New York, 
USA, we have publicly demonstrated over 1000 swarm bots 
with more than a dozen human participants.  

The limitations we have encountered with avatar scaling 
during these experiments have been in getting enough 
hardware to generate the load of over 1000 clients and the 
limited physics simulation capabilities of a single thread on 
the scene server.  

VI. CONCLUSION AND FUTURE WORK 

We have described how the distributed scene graph with 
discrete actors for client management, script processing and 
physics simulation can convert the scene server from a 
monolithic VE simulator to a high speed communication bus. 
A publish/subscribe model from actors to the scene allow for 
several technologies such as spatial filtering and update 
detail reduction to further increase the scalability potential of 
the architecture. 

With the client management actor in place, we have 
nearly doubled the number of connected clients with a "full 
speed" simulation frame rate by offloading the client 
processing from the scene. We have also demonstrated 

publicly over 1000 connected avatars with an interactive 
frame rate. These results validate our DSG proposal that 
offloading simulation processing from the monolithic scene 
server and communicating with and through the scene via a 
Scene API allows the entire VE scene to scale with the 
addition of hardware. 

In other areas of our DSG work, we have demonstrated a 
distributed script engine which enables multiple servers to 
process scripts for objects within a single region of virtual 
space. Our research continues into creating an actor for 
distributed and multi-threaded physics simulations. 

Future experiments will include network emulation and 
more testing of the distributed client managers on the open 
Internet. We expect to encounter additional challenges when 
the latency and jitter of real networks are introduced to the 
synchronization, publish/subscribe functions of the 
distributed scene graph. 
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