Getting Real - Self-Organized Resource Allocation on Second Life Avatar Traces

Jean Botev

University of Luxembourg
Wei Tsang Ooi
National University of Singapore
Ingo Scholtes
University of Trier

Overview

HyperVerse
Resource Allocation
PhyRA / FloRA
Comparative Evaluation
Second Life Avatar Traces
Quantitative Measurements
Qualitative Characteristics

HyperVerse

.IIII.III

Critical Regions

Virtual Peers

Epidemic Hot Spot Detection

Gossip-based aggregation with two values:

$$
M_{i}=\sum_{i=1}^{n} m_{i} \quad C_{i}=\frac{\sum_{j=1}^{n} l_{j} \cdot m_{j}}{M_{i}}
$$

PhyRA

IIIII.III

< DEMO MOVIE >

http://mocca.uni.lu/resourceallocation/

FloRA

< DEMO MOVIE >

http://mocca.uni.lu/flora/

Second Life Avatar Traces

Freebies

Isis

Ross

IIIII.III

Regional Density

IIIII.III

Regional Density

Region	Peers	\varnothing Peers	\varnothing Peers (Top 5 HS)
Freebies	3153	84.53852	63.30%
Isis	2735	83.1019	81.02%
Pharm	1537	92.9652	91.04%
Ross	560	25.20552	28.76%

Example Situation

Freebies (09:33:09)

Churn

$$
\begin{gathered}
C(t)=\frac{\left|V_{t} \Delta V_{t-1}\right|}{\left|V_{t}\right|+\left|V_{t-1}\right|} \\
C(t, \delta)=\sum_{i=t}^{t+\delta} C(i)
\end{gathered}
$$

Churn

Region	\varnothing Churn Rate		
	1 min	10 min	1 h
Freebies	3.70%	22.60%	46.58%
Isis	3.52%	22.41%	45.20%
Pharm	1.64%	10.36%	26.51%
Ross	2.91%	12.47%	28.52%

Accuracy Development

Freebies

PhyRA

Accuracy Development

FloRA

Isis

PhyRA

Accuracy Development

Pharm
FloRA

PhyRA

Accuracy Development

Ross

FloRA

PhyRA

Degree Development

Freebies

FloRA

PhyRA

Degree Development

Isis

FloRA

PhyRA

Degree Development

FloRA

PhyRA

Degree Development

Ross

FloRA

PhyRA

Degree Distribution

Degree Distribution

Ross
 k

Degree Distribution

FloRA

Algebraic Connectivity

$$
L_{i j}(G)= \begin{cases}1 & i=j \text { and } d_{j} \neq 0 \\ -\frac{1}{\sqrt{d_{i} d_{j}}} & (i, j) \in E \\ 0 & \text { else }\end{cases}
$$

Algebraic Connectivity

Region	NoRA	FloRA	PhyRA
Freebies	0.64	0.63	0.66
Isis	0.82	0.83	0.84
Pharm	0.36	0.85	0.91
Ross	0.83	0.91	1.10

Summary

Resilient, Self-Organized Resource Allocation
Accurate Placement of Virtual Peers
Substantial Node Degree Reduction
Improved Connectivity
Constant Communication Cost

Thank you...

L7

