Getting Real – Self-Organized Resource Allocation on Second Life Avatar Traces

Jean Botev University of Luxembourg

Wei Tsang Ooi National University of Singapore

Ingo Scholtes University of Trier

HyperVerse

Resource Allocation

PhyRA / FloRA

Comparative Evaluation

Second Life Avatar Traces

Quantitative Measurements

Qualitative Characteristics

HyperVerse

UNIVERSITÉ DU LUXEMBOURG

Critical Regions

UNIVERSITÉ DU LUXEMBOURG

Virtual Peers

Epidemic Hot Spot Detection

Gossip-based aggregation with two values:

PhyRA

< DEMO MOVIE >

http://mocca.uni.lu/resourceallocation/

FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

FloRA

< DEMO MOVIE >

http://mocca.uni.lu/flora/

FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

UNIVERSITÉ DU

LUXEMBOURG

Second Life Avatar Traces

Pharm

Regional Density

Regional Density

Region	Peers	ø Peers	Ø Peers (Top 5 HS)
Freebies	3153	84.53852	63.30%
Isis	2735	83.1019	81.02%
Pharm	1537	92.9652	91.04%
Ross	560	25.20552	28.76%

Example Situation

Freebies (09:33:09)

Churn

$$C(t) = \frac{|V_t \triangle V_{t-1}|}{|V_t| + |V_{t-1}|}$$

$$C(t,\delta) = \sum_{i=t}^{t+\delta} C(i)$$

Churn

Region	Ø Churn Rate			
Region	1min	10min	1h	
Freebies	3.70%	22.60%	46.58%	
Isis	3.52%	22.41%	45.20%	
Pharm	1.64%	10.36%	26.51%	
Ross	2.91%	12.47%	28.52%	

Freebies

Time (Seconds)

FloRA

Isis

UNIVERSITÉ DU LUXEMBOURG

Pharm

FloRA

Time (Seconds)

PhyRA

UNIVERSITÉ DU LUXEMBOURG

Degree Development

Freebies

Time (Seconds)

Isis

Degree Development

FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Degree Development

20000

40000

Time (Seconds)

60000

80000

UNIVERSITÉ DU LUXEMBOURG

FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

20 10 0

0

Degree Development

FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Degree Distribution

Degree Distribution

Degree Distribution

Algebraic Connectivity

$$L_{ij}(G) = \begin{cases} 1 & i = j \text{ and } d_j \neq 0\\ -\frac{1}{\sqrt{d_i d_j}} & (i, j) \in E\\ 0 & \text{else} \end{cases}$$

Algebraic Connectivity

Region	NoRA	FloRA	PhyRA
Freebies	0.64	0.63	0.66
Isis	0.82	0.83	0.84
Pharm	0.36	0.85	0.91
Ross	0.83	0.91	1.10

Summary

Resilient, Self-Organized Resource Allocation

Accurate Placement of Virtual Peers

Substantial Node Degree Reduction

Improved Connectivity

Constant Communication Cost

Thank you...

UNIVERSITÉ DU

LUXEMBOURG