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Overview

• Consistency model and challenges

• State persistency overview

• Pithos design

• Results

• Conclusion



Update-based 
consistency model



Consistency challenges

• Event dissemination

• Event ordering

• State persistency

• Interest management

• Cheating mitigation



State persistency

• Storage of game objects

• Game objects can be stored in primary 
(state management) or secondary storage

• State persistency is treated as a sub-domain 
of state consistency

• State persistency remains relatively 
unaddressed



State persistency 
requirements

• Scalability

• Reliability

• Fairness

• Responsiveness

• Security



State persistency types

• Super peer storage

• Overlay storage

• Super peer-overlay hybrid storage

• Distance-based storage



Storage type 
comparison

Type Reliability Fairness Responsiveness Security

Super peer

Overlay

Super peer-
overlay hybrid

Distance-based

Yes No Yes No

Yes Yes No Yes

Yes No Yes Yes

No Yes Yes No



Pithos characteristics

• Grouping

• Replication

• Distance-based storage

• Secure storage and node ID assignments



Grouping

• Allows for scalable 
distributed model 
with low latency.

• Cluster-based

• Region-based

Fig. 1. Layout of the Pithos storage architecture

the group. On the second tier, which is the inter-group level,
a P2P overlay is used to store data between groups.

According to categorisation of II, Pithos is a type of hybrid
storage, that incorporates overlay storage and distance-based
storage. Responsiveness is achieved by constructing fully con-
nected networks amongst groups of players and then storing
objects that are mostly used by the group within the group,
as described in Sections III-A, III-B and III-C. Reliability is
achieved by making use of replication and migration mecha-
nisms as described in Section III-B. Security is achieved by
using a certification authority to assign node IDs and signing
any storage and retrieve request with the requesting node’s
certificate, as described in Section III-D. Fairness is achieved
by having all nodes store objects, as described in Sections
III-B and III-C.

A. Grouping

At the core of the architecture is the peer clustering mech-
anism. Two approaches are being evaluated: distributed clus-
tering techniques (for example affinity propagation [?]) and
dynamic regioning techniques (for example self-organising
spatial publish subscribe (SOSPS) [?]).

Distributed peer clustering techniques: make use of the
flocking behaviour of players to dynamically group players
into flocks or clusters [?]. The main idea of flocking is that
players move around in groups, rather than randomly on their
own. It is desirable that user density within groups should
remain constant, because a fully distributed architecture is not
scalable. This means that groups should merge or split as the
user density within them change.

Affinity propagation clusters nodes using a similarity matrix
to find similar nodes. The similarity matrix may contain user
positions. In this case, affinity propagation will group nodes
depending on their location in a virtual world. This algorithm
is ideally suited to P2P applications, since it is a distributed
clustering algorithm based on message passing.

Dynamic regioning: divides the virtual world into regions
that can be resized or further divided to maintain constant

player densities across regions. SOSPS creates dynamic re-
gions based on a Voronoi overlay network [?]. Near constant
user density is achieved by increasing and decreasing the area
sizes. This system is based on VON, a distributed Voronoi
overlay network designed for MMVEs [?].

B. Replication

When storing objects in Pithos, replication is used to in-
crease object availability under network churn and for security
in the presence of malicious nodes [?]. For every object that is
stored in Pithos, k object replicas are also stored. The number
of replicas (k) depends on the degree of network churn as well
as the number of expected malicious users in the network. If
the network churn is high, more replicas are required to avoid
the situation where all k peers hosting an object leaves the
network before any object migration can be done.

If a node leaves the network and stops to transmit “keep
alive” messages, the migration mechanism will detect this and
replicate the file on another node. Replication exists intra- as
well as inter-group and is useful in ensuring that if a nodes
leaves the network, the data are not lost. All object requests
are routed to the peer with the next closest ID if the root
peer leaves, because of how overly routing functions. The
new destination peers will possess the stored files, since Pithos
stores overlay replicas at overlay neighbours.

Another reason to replicate game objects is to make the
system more secure. If it is known that a certain percentage
of users are malicious, it is advantages to have more replicas
than malicious users. This will allow for a secure system where
object hashes can be compared to determine which nodes are
malicious and what version of an object is accurate.

C. Distance-based storage

For Pithos to succeed as an MMVE storage architecture,
intra-group data requests should be preferred to inter-group
data requests. This requirement, combined with the fact that
the grouping algorithm geographically groups players in the
virtual world, lends Pithos to a storage system based on
distance-based storage. Similar to interest management, the
assumption is that players have a limited area of interest and
require interaction with a limited number of objects within
range.

Therefore, distance-based storage is implemented on a
group level rather than an individual level. This means that
objects are stored on the nearest group of players, rather
than the nearest user. It is assumed that such an approach
will alleviate the security and reliability challenges present in
distance-based storage [?].

With group-based distance-based storage, it is assumed
that because peers now store objects closest to the group,
the objects that they are interested in will most likely be
stored within their own group. Therefore, most data requests
should be intra-group requests. The overlay storage component
ensures that nodes that require data, which are not stored
within their group, are still able to access requested data.



Replication

• Every object is replicated k times

• replication addresses churn and malicious 
users

• k depends on the percentage of malicious 
users and the churn rate



Distance-based storage

• Exploits player grouping architecture to 
improve latency

• Players interested in objects have direct 
access to the objects

• Group level distance-based storage

• Group-based reduces security risks



Secure node ID assignment

• All node IDs are assigned by a trusted 
certification authority

• Prevents nodes from deliberately hosting 
files of interest



Identified storage

• Anonymity does not allow for identification 
and elimination of malicous nodes

• Custom Certification authority

• All actions are signed with public 
certificates



Pithos evaluation

• Simulation model description

• Responsiveness

• Fairness



Model description

• Implemented in Oversim, running on 
Omnet++

• Pastry used for overlay routing

• Simulation driven by a game module

• Uses Oversim simple underlay with 
euclidean latency matrix



Model parameters

• One request every 10 s

• Request size of 10 KB

• Three replicas for every object stored

• 14999 peers, 500 super peers and 1 
directory server



Responsiveness

• Two levels of responsiveness:

• Intra-group and

• Inter-group

• Calculate responsiveness as weighted 
average of the two levels.

• Compare theoretical number of hops



Time distribution of 
objects

D. Secure storage and node ID assignments

In order to design a secure distributed storage system, one
requirement for the P2P overlay is that nodes should not be
able to select their own IDs or it will not be possible to secure
the system against attack. Node IDs should rather be assigned
securely by some certification authority [?].

To meet this requirement, Pithos implements its own cer-
tification authority to assign node IDs securely and promote
security in the P2P overlay. A certification server exists that
handle ID requests from nodes. The server assigns IDs to
nodes and provides the node with a signed certificate that it
may use to store data.

Whenever an object is stored or updated in the storage
network, nodes have to sign the object to enable the tracking
of object changes throughout the life of the object. This system
is very different from classic distributed file storage designs
that advocate anonymity in storage. The fact that all changes
can be tracked to a specific node will simplify the task of
eliminating user cheating.

IV. ARCHITECTURE EVALUATION

Pithos is currently still a work in progress, and although
the design presented in the previous section is meant to
address all identified requirements, only preliminary results
for responsiveness and fairness is presented in this section.

A. Simulation model

The proposed multi-tiered model is currently being imple-
mented in Oversim [?], a P2P simulation environment based
in Omnet++, which allows for the measurement of identified
requirements. Furthermore, it allows for the comparison of
the current model with other state persistency models. Initial
results are promising, with the implemented model functioning
as expected. The simulated system is very responsive when
storing data within a group and as responsive as storing data
in an overlay, when storing data between groups.

Pithos is designed to form part of a complete P2P MMVE
network solution. It is assumed that there exists some intel-
ligence that drives Pithos and has to determine when objects
have to be stored and retrieved on each peer. This driving
intelligence is termed the game layer.

In the results shown, Pastry was used as the P2P overlay
and Pithos was driven by a Game module developed for this
purpose. After a node has joined a group, the game module
starts to generate store and retrieve requests at a rate of 10
objects per second and a size of 1024 bytes. The size of 1024
byte objects was chosen to be much larger than Quake 3 game
objects without delta encoding, used in [?]. Pithos is designed
for the low latency storage of small game objects.

For the results shown, 14499 peers, 500 super peers and a
single directory server are created at the start of the simulation.
The directory server publishes super peer information, which
allows a peer to join the group nearest to it. Because of the
way Pithos is structured, each super peer node is also a peer
node, which gives a total of 15000 Oversim nodes.

To be able to simulate Pithos for 15000 nodes, it runs on the
Oversim simple underlay network [?], where node latencies
are determined by the distance between nodes placed in an n-
dimensional Euclidean space. The positions of the nodes are
chosen to match the latencies of the CAIDA/Skitter project.
Different nodes are also assigned different bandwidth and jitter
parameters to simulate a heterogenous network.

B. Responsiveness

To exactly compare Pithos with overlay storage, the proba-
bility that a message is routed within a group (P (g)) should
first be known. It is expected that P (g) will be different
for MMVEs with different defining mechanics. It should be
possible to determine P (g) experimentally for a specific type
of game, but this will require access to the game client of an
already implemented P2P MMVE. The exact measurement of
P (g) is left for future work, but the responsiveness can be
calculated as a function of P (g). Working with a function in
P (g) also allows for the implementation of various dynamic
strategies that can adapt to various values of P (g).

We define P (o) = 1�P (g) as the probability that a message
is routed within the overlay. We define Tgroup as the root and
replica message distribution and Toverlay as the overlay message
distribution, both shown in Figure 2. The expected value of the
overall system response time (E[Tresp]) can then be presented
as a weighted average of the expected values of both the group
and overlay storage distributions, as follows:

E[Tresp] = P (g) (E [Tgroup]) + P (o) (E [Toverlay])

= P (g) (E [Tgroup]) + [1� P (g)] (E [Toverlay]) . (1)

Fig. 2. (top) Time distribution of overlay and root/replica objects, (bottom)
time distribution of Pastry objects.

Figure 2 (top) shows the distribution of mean storage request
times over all nodes in the Pithos network for the different
storage types. One can see that the intra-group root and replica
objects are stored much faster (E [Tgroup] = 0.0878s) than the
overlay objects in the network (E [Toverlay] = 0.328s). Figure 2
(bottom) presents the responsiveness of a pure Pastry network



Expected number of 
hops

Fig. 2. (top) Time distribution of overlay and root/replica objects, (bottom)
time distribution of Pastry objects.

know what this percentage is, but the responsiveness can be
calculated as a function of P (g).

The responsiveness of Pithos will depend on the responsive-
ness of Pastry, where the expected number of Pastry hops are
given by: [16]:

E[Hpastry] = log2b (N) , (2)

where b is a network parameter that is usually chosen as b = 4.
From this, it is possible to calculate a theoretical performance
for Pithos and compare that with a theoretical performance of
overlay storage.

When using a weighted hop average, as with Equation (3),
the expected number of Pithos hops is given by:

E[Hpithos] = P (g) (E [Hgroup]) + (1� P (g)) (E [Hoverlay]) ,
(3)

where E [Hgroup] is the expected number of group hops and
E [Hoverlay] is the expected number of overly hops. In Pithos,
E [Hgroup] = 1, because in a fully connected group any node
is always one hop away from any other node.

To find the value of E [Hoverlay], one has to consider how
many hops an overlay message requires in Pithos. One hop is
required to send a store request from a group peer to its super
peer. The super peer then forwards the message to another
super peer in log16(M) hops, from Equation (2), where M is
the number of super peers in the network. From the destination
super peer, another hop is required to send the message to the
destination group peer. This gives:

E [Hgroup] = 1 + log16(M) + 1. (4)

Equation (3) then becomes:

E[Hpithos] = P (g) + (1� P (g)) (2 + log16 (M)) . (5)

Figure 3 compares the expected number of Pithos hops with
the expected number of overlay hops as a function of intra-
group probability (P (g)) for various numbers of nodes (N ).
The overlay hops were calculated from Equation (2), while the
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Fig. 3. Expected number of Pithos hops, compared to the expected number
of overlay hops, as a function of P (g) for various values of N

Pithos hops were calculated from Equation (5). For the Pithos
graphs, an average number of 50 peers per group was used to
determine the number of super peers.

Figure 3 shows that for a low value of P (g), overlay storage
performs better than Pithos because of the additional two
hops present in Pithos. High values for P (g) are expected,
because of the distance-based design of Pithos that attempts to
maximise the value of P (g). This should have Pithos perform
better than overlay storage.

C. Fairness

Fig. 4. (top) Root/Replica object number distribution, (bottom) overlay
number distribution.

To evaluate the fairness, we evaluate the standard deviation
of the number of objects stored per peer. Figure 4 (top) shows
the distribution of group objects over nodes in the network.
The figure shows how many nodes store how many objects.
From this figure it is evident that the object distribution forms
a Rayleigh distribution, with a mean and standard deviation
of 302 and 51 objects per node respectively.

Figure 4 (bottom) shows the distribution of overlay objects
in Pithos with a mean and standard deviation of 153 and
189 objects per node respectively. Comparing the standard
deviations of group storage to overlay storage, it appears that
group storage is much fairer than overlay storage. This shows
that by designing a hybrid system which prefers group storage
to overlay storage, one is also designing a fairer system than
overlay storage.



Fairness

• Standard deviation of objects stored per 
peer.



Object number 
distribution

Fig. 2. (top) Time distribution of overlay and root/replica objects, (bottom)
time distribution of Pastry objects.

know what this percentage is, but the responsiveness can be
calculated as a function of P (g).

The responsiveness of Pithos will depend on the responsive-
ness of Pastry, where the expected number of Pastry hops are
given by: [16]:

E[Hpastry] = log2b (N) , (2)

where b is a network parameter that is usually chosen as b = 4.
From this, it is possible to calculate a theoretical performance
for Pithos and compare that with a theoretical performance of
overlay storage.

When using a weighted hop average, as with Equation (3),
the expected number of Pithos hops is given by:

E[Hpithos] = P (g) (E [Hgroup]) + (1� P (g)) (E [Hoverlay]) ,
(3)

where E [Hgroup] is the expected number of group hops and
E [Hoverlay] is the expected number of overly hops. In Pithos,
E [Hgroup] = 1, because in a fully connected group any node
is always one hop away from any other node.

To find the value of E [Hoverlay], one has to consider how
many hops an overlay message requires in Pithos. One hop is
required to send a store request from a group peer to its super
peer. The super peer then forwards the message to another
super peer in log16(M) hops, from Equation (2), where M is
the number of super peers in the network. From the destination
super peer, another hop is required to send the message to the
destination group peer. This gives:

E [Hgroup] = 1 + log16(M) + 1. (4)

Equation (3) then becomes:

E[Hpithos] = P (g) + (1� P (g)) (2 + log16 (M)) . (5)

Figure 3 compares the expected number of Pithos hops with
the expected number of overlay hops as a function of intra-
group probability (P (g)) for various numbers of nodes (N ).
The overlay hops were calculated from Equation (2), while the
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Pithos hops were calculated from Equation (5). For the Pithos
graphs, an average number of 50 peers per group was used to
determine the number of super peers.

Figure 3 shows that for a low value of P (g), overlay storage
performs better than Pithos because of the additional two
hops present in Pithos. High values for P (g) are expected,
because of the distance-based design of Pithos that attempts to
maximise the value of P (g). This should have Pithos perform
better than overlay storage.

C. Fairness

Fig. 4. (top) Root/Replica object number distribution, (bottom) overlay
number distribution.

To evaluate the fairness, we evaluate the standard deviation
of the number of objects stored per peer. Figure 4 (top) shows
the distribution of group objects over nodes in the network.
The figure shows how many nodes store how many objects.
From this figure it is evident that the object distribution forms
a Rayleigh distribution, with a mean and standard deviation
of 302 and 51 objects per node respectively.

Figure 4 (bottom) shows the distribution of overlay objects
in Pithos with a mean and standard deviation of 153 and
189 objects per node respectively. Comparing the standard
deviations of group storage to overlay storage, it appears that
group storage is much fairer than overlay storage. This shows
that by designing a hybrid system which prefers group storage
to overlay storage, one is also designing a fairer system than
overlay storage.



Combined object 
number distribution

At first glance, one might think that mapping one uniform
distribution (the file ID hashes) to another uniform distribution
(the node ID hashes) in a distance-based manner of overlay
storage would produce a system where the number of files
per node is roughly balanced [16]. This is not the case, as can
be seen from the high standard deviation of overlay storage
compared to group storage.

Fig. 5. Combined object number distribution

Figure 5 shows the combined object distribution of Pithos,
with a mean and standard deviation of 453 and 200 objects
per node respectively. This shows that the fairness of Pithos is
currently dominated by the fairness of Pastry and that Pithos
is as fair as overlay storage.

V. CONCLUSION

A. Summary
In this paper, we presented a novel classification of storage

types. None of the storage types satisfied all identified re-
quirements of P2P MMVE storage systems. A novel storage
architecture called Pithos was presented to satisfy all the
identified requirements, followed by a description of all its
key design aspects. For preliminary results, the requirements
of responsiveness and reliability were compared to those of
overlay storage and Pithos was found to be more responsive
than overlay storage and as fair.

B. Future work
For future work, we plan to complete the Pithos architec-

ture and compare all requirements with all identified storage
types. The simulation does not yet support network churn.
A migration mechanism should still be implemented before
testing under churn can be done. Various improvements to the
current Pithos architecture can also be made. This includes
using signalling to store files as described in Section III-B
as well as further improving fairness and responsiveness in
Pithos.

A key aspect of completing Pithos will be how players
are grouped. Future research will focus on user behaviour,
clustering algorithms and dynamic regioning approaches. The
different clustering techniques should be compared and the
most applicable one will be chosen to drive Pithos.

A model of data storage and retrieval requests are also
required for a typical MMVE. This should include object sizes
stored, how regularly these objects are stored and what latency
requirements exist for object retrieval. It is assumed that this
will depend on the specific MMVE and therefore different
storage parameters should also be identified.
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Conclusion

• None of the previous state persistency 
schemes satisfy all MMVE storage 
requirements

• Pithos was presented which satisfies all 
requirements by design

• Initial simulation results look promising



Future work

• Pithos still needs to be completed, both as 
a simulation model and an actual 
implementation

• Novel grouping algorithms is still required 
to satisfy Pithos’s goal.

• Pithos should be tested under MMVE levels 
of churn.



Thank you!



Any questions?


